IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53560-3.html
   My bibliography  Save this article

Phase-transformable metal-organic polyhedra for membrane processing and switchable gas separation

Author

Listed:
  • Po-Chun Han

    (Kyoto University, Yoshida, Sakyo-ku
    National Taiwan University)

  • Chia-Hui Chuang

    (National Taiwan University)

  • Shang-Wei Lin

    (Fu Jen Catholic University)

  • Xiangmei Xiang

    (Kyoto University, Yoshida, Sakyo-ku
    Kyoto University, Katsura, Nishikyo-ku)

  • Zaoming Wang

    (Kyoto University, Yoshida, Sakyo-ku)

  • Mako Kuzumoto

    (Kyoto University, Katsura, Nishikyo-ku)

  • Shun Tokuda

    (Kyoto University, Yoshida, Sakyo-ku
    Kyoto University, Katsura, Nishikyo-ku)

  • Tomoki Tateishi

    (Kyoto University, Yoshida, Sakyo-ku)

  • Alexandre Legrand

    (Kyoto University, Yoshida, Sakyo-ku
    UMR 8181)

  • Min Ying Tsang

    (Kyoto University, Yoshida, Sakyo-ku
    ul. Stabłowicka 147)

  • Hsiao-Ching Yang

    (Fu Jen Catholic University)

  • Kevin C.-W. Wu

    (National Taiwan University
    National Taiwan University)

  • Kenji Urayama

    (Kyoto University, Katsura, Nishikyo-ku)

  • Dun-Yen Kang

    (National Taiwan University)

  • Shuhei Furukawa

    (Kyoto University, Yoshida, Sakyo-ku
    Kyoto University, Katsura, Nishikyo-ku)

Abstract

The capability of materials to interconvert between different phases provides more possibilities for controlling materials’ properties without additional chemical modification. The study of state-changing microporous materials just emerged and mainly involves the liquefication or amorphization of solid adsorbents into liquid or glass phases by adding non-porous components or sacrificing their porosity. The material featuring reversible phases with maintained porosity is, however, still challenging. Here, we synthesize metal-organic polyhedra (MOPs) that interconvert between the liquid-glass-crystal phases. The modular synthetic approach is applied to integrate the core MOP cavity that provides permanent microporosity with tethered polymers that dictate the phase transition. We showcase the processability of this material by fabricating a gas separation membrane featuring tunable permeability and selectivity by switching the state. Compared to most conventional porous membranes, the liquid MOP membrane particularly shows the selectivity for CO2 over H2 with enhanced permeability.

Suggested Citation

  • Po-Chun Han & Chia-Hui Chuang & Shang-Wei Lin & Xiangmei Xiang & Zaoming Wang & Mako Kuzumoto & Shun Tokuda & Tomoki Tateishi & Alexandre Legrand & Min Ying Tsang & Hsiao-Ching Yang & Kevin C.-W. Wu &, 2024. "Phase-transformable metal-organic polyhedra for membrane processing and switchable gas separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53560-3
    DOI: 10.1038/s41467-024-53560-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53560-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53560-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel P. Erdosy & Malia B. Wenny & Joy Cho & Christopher DelRe & Miranda V. Walter & Felipe Jiménez-Ángeles & Baofu Qiao & Ricardo Sanchez & Yifeng Peng & Brian D. Polizzotti & Monica Olvera Cruz & J, 2022. "Microporous water with high gas solubilities," Nature, Nature, vol. 608(7924), pages 712-718, August.
    2. Minhyuk Kim & Hwa-Sub Lee & Dong-Hyun Seo & Sung June Cho & Eun-chae Jeon & Hoi Ri Moon, 2024. "Melt-quenched carboxylate metal–organic framework glasses," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Nicola Giri & Mario G. Del Pópolo & Gavin Melaugh & Rebecca L. Greenaway & Klaus Rätzke & Tönjes Koschine & Laure Pison & Margarida F. Costa Gomes & Andrew I. Cooper & Stuart L. James, 2015. "Liquids with permanent porosity," Nature, Nature, vol. 527(7577), pages 216-220, November.
    4. Barelli, L. & Bidini, G. & Gallorini, F. & Servili, S., 2008. "Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review," Energy, Elsevier, vol. 33(4), pages 554-570.
    5. Chang He & Yu-Huang Zou & Duan-Hui Si & Zi-Ao Chen & Tian-Fu Liu & Rong Cao & Yuan-Biao Huang, 2023. "A porous metal-organic cage liquid for sustainable CO2 conversion reactions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang He & Yu-Huang Zou & Duan-Hui Si & Zi-Ao Chen & Tian-Fu Liu & Rong Cao & Yuan-Biao Huang, 2023. "A porous metal-organic cage liquid for sustainable CO2 conversion reactions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Rahimpour, M.R. & Mirvakili, A. & Paymooni, K., 2011. "A novel water perm-selective membrane dual-type reactor concept for Fischer–Tropsch synthesis of GTL (gas to liquid) technology," Energy, Elsevier, vol. 36(2), pages 1223-1235.
    3. Zhuxiu Zhang & Baolin Yang & Bingjie Zhang & Mifen Cui & Jihai Tang & Xu Qiao, 2022. "Type II porous ionic liquid based on metal-organic cages that enables l-tryptophan identification," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    5. Ding, Haoran & Tong, Sirui & Qi, Zhifu & Liu, Fei & Sun, Shien & Han, Long, 2023. "Syngas production from chemical-looping steam methane reforming: The effect of channel geometry on BaCoO3/CeO2 monolithic oxygen carriers," Energy, Elsevier, vol. 263(PE).
    6. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    7. Sanusi, Yinka S. & Mokheimer, Esmail M.A., 2019. "Thermo-economic optimization of hydrogen production in a membrane-SMR integrated to ITM-oxy-combustion plant using genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 164-176.
    8. Li, Xiaoqiang & Ding, Yudong & Guo, Liheng & Liao, Qiang & Zhu, Xun & Wang, Hong, 2019. "Non-aqueous energy-efficient absorbents for CO2 capture based on porous silica nanospheres impregnated with amine," Energy, Elsevier, vol. 171(C), pages 109-119.
    9. Yudong Ding & Liheng Guo & Xiaoqiang Li & Qiang Liao & Xun Zhu & Hong Wang, 2021. "CO2 absorption of anhydrous colloidal suspension based silica nanospheres with different microstructures," Energy & Environment, , vol. 32(8), pages 1437-1456, December.
    10. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    11. Sirui Tong & Bin Miao & Lan Zhang & Siew Hwa Chan, 2022. "Decarbonizing Natural Gas: A Review of Catalytic Decomposition and Carbon Formation Mechanisms," Energies, MDPI, vol. 15(7), pages 1-30, April.
    12. Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
    13. Hong, Sung Kook & Dong, Sang Keun & Han, Jeong Ok & Lee, Joong Seong & Lee, Young Chul, 2013. "Numerical study of effect of operating and design parameters for design of steam reforming reactor," Energy, Elsevier, vol. 61(C), pages 410-418.
    14. Tang, Xin-Yuan & Yang, Wei-Wei & Ma, Xu & Cao, Xiangkun Elvis, 2023. "An integrated modeling method for membrane reactors and optimization study of operating conditions," Energy, Elsevier, vol. 268(C).
    15. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
    16. Peydayesh, Mohammad & Mohammadi, Toraj & Bakhtiari, Omid, 2017. "Effective hydrogen purification from methane via polyimide Matrimid® 5218- Deca-dodecasil 3R type zeolite mixed matrix membrane," Energy, Elsevier, vol. 141(C), pages 2100-2107.
    17. Shashi Sharma & Shivani Agarwal & Ankur Jain, 2021. "Significance of Hydrogen as Economic and Environmentally Friendly Fuel," Energies, MDPI, vol. 14(21), pages 1-28, November.
    18. Zhu, Xuancan & Shi, Yixiang & Cai, Ningsheng, 2016. "Integrated gasification combined cycle with carbon dioxide capture by elevated temperature pressure swing adsorption," Applied Energy, Elsevier, vol. 176(C), pages 196-208.
    19. Ouzounidou, Martha & Ipsakis, Dimitris & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2009. "A combined methanol autothermal steam reforming and PEM fuel cell pilot plant unit: Experimental and simulation studies," Energy, Elsevier, vol. 34(10), pages 1733-1743.
    20. Ji, Guozhao & Zhao, Ming & Wang, Geoff, 2018. "Computational fluid dynamic simulation of a sorption-enhanced palladium membrane reactor for enhancing hydrogen production from methane steam reforming," Energy, Elsevier, vol. 147(C), pages 884-895.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53560-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.