IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53506-9.html
   My bibliography  Save this article

Upcycling polyethylene into closed-loop recyclable polymers through titanosilicate catalyzed C-H oxidation and in-chain heteroatom insertion

Author

Listed:
  • Robin Lemmens

    (KU Leuven)

  • Jannick Vercammen

    (KU Leuven)

  • Lander Belleghem

    (KU Leuven)

  • Dirk Vos

    (KU Leuven)

Abstract

Polyolefins are the most widely produced type of plastics owing to their low production cost and favorable properties. Their polymer backbone consists solely of inert C-C bonds, making them resistant and durable materials. Although this is an extremely useful attribute during their use phase, it complicates chemical recycling. In this work, different types of polyethylenes (PEs) are converted into ketone-functionalized PEs with up to 3.4% functionalized carbon atoms, in mild conditions (≤100 °C), using a titanosilicate catalyst and tert-butyl hydroperoxide as the oxidant. Subsequently, the introduced ketones are exploited as sites for heteroatom insertion. Through Baeyer-Villiger oxidation, in-chain esters are produced with yields up to 73%. Alternatively, the ketones can be converted into the corresponding oxime, which can undergo a Beckmann rearrangement to obtain in-chain amides, with yields up to 75%. These transformations allow access to polymers that are amenable to solvolysis, thereby enhancing their potential for chemical recycling.

Suggested Citation

  • Robin Lemmens & Jannick Vercammen & Lander Belleghem & Dirk Vos, 2024. "Upcycling polyethylene into closed-loop recyclable polymers through titanosilicate catalyzed C-H oxidation and in-chain heteroatom insertion," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53506-9
    DOI: 10.1038/s41467-024-53506-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53506-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53506-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tobias O. Morgen & Maximilian Baur & Inigo Göttker-Schnetmann & Stefan Mecking, 2020. "Photodegradable branched polyethylenes from carbon monoxide copolymerization under benign conditions," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    2. Manuel Häußler & Marcel Eck & Dario Rothauer & Stefan Mecking, 2021. "Closed-loop recycling of polyethylene-like materials," Nature, Nature, vol. 590(7846), pages 423-427, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel H. Weinland & Kevin van der Maas & Yue Wang & Bruno Bottega Pergher & Robert-Jan van Putten & Bing Wang & Gert-Jan M. Gruter, 2022. "Overcoming the low reactivity of biobased, secondary diols in polyester synthesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Xun Zhang & Ximin Feng & Wenqi Guo & Chengjian Zhang & Xinghong Zhang, 2024. "Chemically recyclable polyvinyl chloride-like plastics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Xing-Wang Han & Xun Zhang & Youyun Zhou & Aizezi Maimaitiming & Xiu-Li Sun & Yanshan Gao & Peizhi Li & Boyu Zhu & Eugene Y.-X. Chen & Xiaokang Kuang & Yong Tang, 2024. "Circular olefin copolymers made de novo from ethylene and α-olefins," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Sheng Wang & Nannan Wang & Dan Kai & Bofan Li & Jing Wu & Jayven Chee Chuan YEO & Xiwei Xu & Jin Zhu & Xian Jun Loh & Nikos Hadjichristidis & Zibiao Li, 2023. "In-situ forming dynamic covalently crosslinked nanofibers with one-pot closed-loop recyclability," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Xiaozhuang Zhou & Yijun Zheng & Haohui Zhang & Li Yang & Yubo Cui & Baiju P. Krishnan & Shihua Dong & Michael Aizenberg & Xinhong Xiong & Yuhang Hu & Joanna Aizenberg & Jiaxi Cui, 2023. "Reversibly growing crosslinked polymers with programmable sizes and properties," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Ye Sha & Xiaofan Chen & Wei Sun & Junfeng Zhou & Yucheng He & Enhua Xu & Zhenyang Luo & Yonghong Zhou & Puyou Jia, 2024. "Biorenewable and circular polyolefin thermoplastic elastomers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53506-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.