IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53177-6.html
   My bibliography  Save this article

Infrared thermochromic antenna composite for self-adaptive thermoregulation

Author

Listed:
  • Francisco V. Ramirez-Cuevas

    (University College London
    Universidad Adolfo Ibáñez)

  • Kargal L. Gurunatha

    (University College London
    JAIN University)

  • Lingxi Li

    (University College London)

  • Usama Zulfiqar

    (University College London)

  • Sanjayan Sathasivam

    (London South Bank University
    University College London)

  • Manish K. Tiwari

    (University College London)

  • Ivan P. Parkin

    (University College London)

  • Ioannis Papakonstantinou

    (University College London)

Abstract

Self-adaptive thermoregulation, the mechanism living organisms use to balance their temperature, holds great promise for decarbonizing cooling and heating processes. This functionality can be effectively emulated by engineering the thermal emissivity of materials to adapt to background temperature variations. Yet, solutions that marry large emissivity switching ( $$\varDelta \epsilon$$ Δ ϵ ) with scalability, cost-effectiveness, and design freedom are still lacking. Here, we fill this gap by introducing infrared dipole antennas made of tunable thermochromic materials. We demonstrate that non-spherical antennas (rods, stars and flakes) made of vanadium-dioxide can exhibit a massive (~200-fold) increase in their absorption cross-section as temperature rises. Embedding these antennas in polymer films, or simply spraying them directly, creates free-form thermoregulation composites, featuring an outstanding $$\varDelta \epsilon \sim 0.6$$ Δ ϵ ~ 0.6 in spectral ranges that can be tuned at will. Our research paves the way for versatile self-adaptive heat management solutions (coatings, fibers, membranes, and films) that could find application in radiative-cooling, heat-sensing, thermal-camouflage, and other.

Suggested Citation

  • Francisco V. Ramirez-Cuevas & Kargal L. Gurunatha & Lingxi Li & Usama Zulfiqar & Sanjayan Sathasivam & Manish K. Tiwari & Ivan P. Parkin & Ioannis Papakonstantinou, 2024. "Infrared thermochromic antenna composite for self-adaptive thermoregulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53177-6
    DOI: 10.1038/s41467-024-53177-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53177-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53177-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiuqiang Li & Bowen Sun & Chenxi Sui & Ankita Nandi & Haoming Fang & Yucan Peng & Gang Tan & Po-Chun Hsu, 2020. "Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan, He & Poredoš, Primož & Zou, Hao & Lv, Haotian & Wang, Ruzhu, 2023. "Perspectives for urban microenvironment sustainability enabled by decentralized water-energy-food harvesting," Energy, Elsevier, vol. 282(C).
    2. Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
    3. Geon Lee & Hyunjung Kang & Jooyeong Yun & Dongwoo Chae & Minsu Jeong & Minseo Jeong & Dasol Lee & Miso Kim & Heon Lee & Junsuk Rho, 2024. "Integrated triboelectric nanogenerator and radiative cooler for all-weather transparent glass surfaces," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Zhao, Bin & Liu, Jie & Hu, Mingke & Ao, Xianze & Li, Lanxin & Xuan, Qingdong & Pei, Gang, 2023. "Performance analysis of a broadband selective absorber/emitter for hybrid utilization of solar thermal and radiative cooling," Renewable Energy, Elsevier, vol. 205(C), pages 763-771.
    5. Kit-Ying Chan & Xi Shen & Jie Yang & Keng-Te Lin & Harun Venkatesan & Eunyoung Kim & Heng Zhang & Jeng-Hun Lee & Jinhong Yu & Jinglei Yang & Jang-Kyo Kim, 2022. "Scalable anisotropic cooling aerogels by additive freeze-casting," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Hu, Mingke & Zhao, Bin & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Extending the operation of a solar air collector to night-time by integrating radiative sky cooling: A comparative experimental study," Energy, Elsevier, vol. 251(C).
    7. Zhao, Bin & Wang, Chuyao & Hu, Mingke & Ao, Xianze & Liu, Jie & Xuan, Qingdong & Pei, Gang, 2022. "Light and thermal management of the semi-transparent radiative cooling glass for buildings," Energy, Elsevier, vol. 238(PA).
    8. Xuan, Qingdong & Yang, Ning & Kai, Mingfeng & Wang, Chuyao & Jiang, Bin & Liu, Xunfen & Li, Guiqiang & Pei, Gang & Zhao, Bin, 2024. "Combined daytime radiative cooling and solar photovoltaic/thermal hybrid system for year-round energy saving in buildings," Energy, Elsevier, vol. 304(C).
    9. Wang, Xuanjie & Narayan, Shankar, 2022. "Thermal radiative switching interface for energy-efficient temperature control," Renewable Energy, Elsevier, vol. 197(C), pages 574-582.
    10. Quan Zhang & Yiwen Lv & Yufeng Wang & Shixiong Yu & Chenxi Li & Rujun Ma & Yongsheng Chen, 2022. "Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Gao, Datong & Kwan, Trevor Hocksun & Dabwan, Yousef Naji & Hu, Maobin & Hao, Yong & Zhang, Tao & Pei, Gang, 2022. "Seasonal-regulatable energy systems design and optimization for solar energy year-round utilization☆," Applied Energy, Elsevier, vol. 322(C).
    12. Su, Zixiang & Yang, Liu, 2022. "Peak shaving strategy for renewable hybrid system driven by solar and radiative cooling integrating carbon capture and sewage treatment," Renewable Energy, Elsevier, vol. 197(C), pages 1115-1132.
    13. Hu, Mingke & Zhao, Bin & Suhendri, & Ao, Xianze & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Jianing Song & Wenluan Zhang & Zhengnan Sun & Mengyao Pan & Feng Tian & Xiuhong Li & Ming Ye & Xu Deng, 2022. "Durable radiative cooling against environmental aging," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Zhao, Bin & Xuan, Qingdong & Xu, Chengfeng & Hu, Mingke & Dabwan, Yousef N. & Pei, Gang, 2023. "Considerations of passive radiative cooling," Renewable Energy, Elsevier, vol. 219(P2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53177-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.