IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53166-9.html
   My bibliography  Save this article

Artificial superconducting Kondo lattice in a van der Waals heterostructure

Author

Listed:
  • Kai Fan

    (Huazhong University of Science and Technology)

  • Heng Jin

    (Beijing Normal University
    Beijing Computational Science Research Center)

  • Bing Huang

    (Beijing Normal University
    Beijing Computational Science Research Center)

  • Guijing Duan

    (Renmin University of China)

  • Rong Yu

    (Renmin University of China)

  • Zhen-Yu Liu

    (Huazhong University of Science and Technology)

  • Hui-Nan Xia

    (Huazhong University of Science and Technology)

  • Li-Si Liu

    (Huazhong University of Science and Technology)

  • Yao Zhang

    (Huazhong University of Science and Technology)

  • Tao Xie

    (Huazhong University of Science and Technology)

  • Qiao-Yin Tang

    (Huazhong University of Science and Technology)

  • Gang Chen

    (Huazhong University of Science and Technology)

  • Wen-Hao Zhang

    (Huazhong University of Science and Technology)

  • F. C. Chen

    (Chinese Academy of Sciences)

  • X. Luo

    (Chinese Academy of Sciences)

  • W. J. Lu

    (Chinese Academy of Sciences)

  • Y. P. Sun

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Nanjing University)

  • Ying-Shuang Fu

    (Huazhong University of Science and Technology
    Wuhan Institute of Quantum Technology)

Abstract

Engineering Kondo lattice with tailored functionality is desirable for elucidating the heavy fermion physics. We realize the construction of an artificial Kondo lattice/superconductor heterojunction by growing monolayer VSe2 on bulk 2H-NbSe2 with molecular beam epitaxy. Spectroscopic imaging scanning tunneling microscopy measurements show the emergence of a new charge density wave (CDW) phase with $$\sqrt{3}\times$$ 3 × $$\sqrt{3}$$ 3 periodicity on the monolayer VSe2. Unexpectedly, a pronounced Kondo resonance appears around the Fermi level, and distributes uniformly over the entire film, evidencing the formation of Kondo lattice. Density functional theory calculations suggest the existence of magnetic interstitial V atoms in VSe2/NbSe2, which play a key role in forming the CDW phase along with the Kondo lattice observed in VSe2. The Kondo origin is verified from both the magnetic field and temperature dependences of the resonance peak, yielding a Kondo temperature of ~ 44 K. Moreover, a superconducting proximity gap opens on monolayer VSe2, whose shape deviates from the function of one-band BCS superconductor, but is reproduced by model calculations with heavy electrons participating the pairing condensate. Our work lays the experimental foundation for studying interactions between the heavy fermion liquids and the superconducting condensate.

Suggested Citation

  • Kai Fan & Heng Jin & Bing Huang & Guijing Duan & Rong Yu & Zhen-Yu Liu & Hui-Nan Xia & Li-Si Liu & Yao Zhang & Tao Xie & Qiao-Yin Tang & Gang Chen & Wen-Hao Zhang & F. C. Chen & X. Luo & W. J. Lu & Y., 2024. "Artificial superconducting Kondo lattice in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53166-9
    DOI: 10.1038/s41467-024-53166-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53166-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53166-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shiwei Shen & Chenhaoping Wen & Pengfei Kong & Jingjing Gao & Jianguo Si & Xuan Luo & Wenjian Lu & Yuping Sun & Gang Chen & Shichao Yan, 2022. "Inducing and tuning Kondo screening in a narrow-electronic-band system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. María Moro-Lagares & Richard Korytár & Marten Piantek & Roberto Robles & Nicolás Lorente & Jose I. Pascual & M. Ricardo Ibarra & David Serrate, 2019. "Real space manifestations of coherent screening in atomic scale Kondo lattices," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. A. K. Geim & I. V. Grigorieva, 2013. "Van der Waals heterostructures," Nature, Nature, vol. 499(7459), pages 419-425, July.
    4. Shawulienu Kezilebieke & Md Nurul Huda & Viliam Vaňo & Markus Aapro & Somesh C. Ganguli & Orlando J. Silveira & Szczepan Głodzik & Adam S. Foster & Teemu Ojanen & Peter Liljeroth, 2020. "Topological superconductivity in a van der Waals heterostructure," Nature, Nature, vol. 588(7838), pages 424-428, December.
    5. Pegor Aynajian & Eduardo H. da Silva Neto & András Gyenis & Ryan E. Baumbach & J. D. Thompson & Zachary Fisk & Eric D. Bauer & Ali Yazdani, 2012. "Visualizing heavy fermions emerging in a quantum critical Kondo lattice," Nature, Nature, vol. 486(7402), pages 201-206, June.
    6. S. Seiro & L. Jiao & S. Kirchner & S. Hartmann & S. Friedemann & C. Krellner & C. Geibel & Q. Si & F. Steglich & S. Wirth, 2018. "Evolution of the Kondo lattice and non-Fermi liquid excitations in a heavy-fermion metal," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Wan & Rishav Harsh & Antonella Meninno & Paul Dreher & Sandra Sajan & Haojie Guo & Ion Errea & Fernando Juan & Miguel M. Ugeda, 2023. "Evidence for ground state coherence in a two-dimensional Kondo lattice," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Guanghui Cheng & Mohammad Mushfiqur Rahman & Zhiping He & Andres Llacsahuanga Allcca & Avinash Rustagi & Kirstine Aggerbeck Stampe & Yanglin Zhu & Shaohua Yan & Shangjie Tian & Zhiqiang Mao & Hechang , 2022. "Emergence of electric-field-tunable interfacial ferromagnetism in 2D antiferromagnet heterostructures," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    3. Hideki Matsuoka & Tetsuro Habe & Yoshihiro Iwasa & Mikito Koshino & Masaki Nakano, 2022. "Spontaneous spin-valley polarization in NbSe2 at a van der Waals interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Junhyeon Jo & Yuan Peisen & Haozhe Yang & Samuel Mañas-Valero & José J. Baldoví & Yao Lu & Eugenio Coronado & Fèlix Casanova & F. Sebastian Bergeret & Marco Gobbi & Luis E. Hueso, 2023. "Local control of superconductivity in a NbSe2/CrSBr van der Waals heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Lucas Schneider & Philip Beck & Levente Rózsa & Thore Posske & Jens Wiebe & Roland Wiesendanger, 2023. "Probing the topologically trivial nature of end states in antiferromagnetic atomic chains on superconductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Yuri Saida & Thomas Gauthier & Hiroo Suzuki & Satoshi Ohmura & Ryo Shikata & Yui Iwasaki & Godai Noyama & Misaki Kishibuchi & Yuichiro Tanaka & Wataru Yajima & Nicolas Godin & Gaël Privault & Tomoharu, 2024. "Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Chan-young Lim & Min-Seok Kim & Dong Cheol Lim & Sunghun Kim & Yeonghoon Lee & Jaehoon Cha & Gyubin Lee & Sang Yong Song & Dinesh Thapa & Jonathan D. Denlinger & Seong-Gon Kim & Sung Wng Kim & Jungpil, 2024. "Topological Fermi-arc surface state covered by floating electrons on a two-dimensional electride," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Ying-Xin Ma & Xue-Dong Wang, 2024. "Directional self-assembly of organic vertically superposed nanowires," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Cheng Hu & Jiajun Chen & Xianliang Zhou & Yufeng Xie & Xinyue Huang & Zhenghan Wu & Saiqun Ma & Zhichun Zhang & Kunqi Xu & Neng Wan & Yueheng Zhang & Qi Liang & Zhiwen Shi, 2024. "Collapse of carbon nanotubes due to local high-pressure from van der Waals encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Eli Gerber & Steven B. Torrisi & Sara Shabani & Eric Seewald & Jordan Pack & Jennifer E. Hoffman & Cory R. Dean & Abhay N. Pasupathy & Eun-Ah Kim, 2023. "High-throughput ab initio design of atomic interfaces using InterMatch," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Qiang Gao & Jin Mo Bok & Ping Ai & Jing Liu & Hongtao Yan & Xiangyu Luo & Yongqing Cai & Cong Li & Yang Wang & Chaohui Yin & Hao Chen & Genda Gu & Fengfeng Zhang & Feng Yang & Shenjin Zhang & Qinjun P, 2024. "ARPES detection of superconducting gap sign in unconventional superconductors," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Bohayra Mortazavi & Timon Rabczuk, 2018. "Boron Monochalcogenides; Stable and Strong Two-Dimensional Wide Band-Gap Semiconductors," Energies, MDPI, vol. 11(6), pages 1-10, June.
    16. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Boxuan Yang & Bibek Bhujel & Daniel G. Chica & Evan J. Telford & Xavier Roy & Fatima Ibrahim & Mairbek Chshiev & Maxen Cosset-Chéneau & Bart J. van Wees, 2024. "Electrostatically controlled spin polarization in Graphene-CrSBr magnetic proximity heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Lun-Hui Hu & Rui-Xing Zhang, 2023. "Topological superconducting vortex from trivial electronic bands," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Xiang-Rui Liu & Hanbin Deng & Yuntian Liu & Zhouyi Yin & Congrun Chen & Yu-Peng Zhu & Yichen Yang & Zhicheng Jiang & Zhengtai Liu & Mao Ye & Dawei Shen & Jia-Xin Yin & Kedong Wang & Qihang Liu & Yue Z, 2023. "Spectroscopic signature of obstructed surface states in SrIn2P2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53166-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.