IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53159-8.html
   My bibliography  Save this article

The homeodomain regulates stable DNA binding of prostate cancer target ONECUT2

Author

Listed:
  • Avradip Chatterjee

    (Cedars-Sinai Medical Center
    Cedars-Sinai Medical Center)

  • Brad Gallent

    (Cedars-Sinai Medical Center
    Cedars-Sinai Medical Center)

  • Madhusudhanarao Katiki

    (Cedars-Sinai Medical Center
    Cedars-Sinai Medical Center)

  • Chen Qian

    (Cedars-Sinai Medical Center
    Cedars-Sinai Medical Center)

  • Matthew R. Harter

    (Cedars-Sinai Medical Center
    Cedars-Sinai Medical Center)

  • Steve Silletti

    (University of California San Diego)

  • Elizabeth A. Komives

    (University of California San Diego)

  • Michael R. Freeman

    (Cedars-Sinai Medical Center
    Cedars-Sinai Medical Center)

  • Ramachandran Murali

    (Cedars-Sinai Medical Center
    Cedars-Sinai Medical Center)

Abstract

The CUT and homeodomain are ubiquitous DNA binding elements often tandemly arranged in multiple transcription factor families. However, how the CUT and homeodomain work concertedly to bind DNA remains unknown. Using ONECUT2, a driver and therapeutic target of advanced prostate cancer, we show that while the CUT initiates DNA binding, the homeodomain thermodynamically stabilizes the ONECUT2-DNA complex through allosteric modulation of CUT. We identify an arginine pair in the ONECUT family homeodomain that can adapt to DNA sequence variations. Base interactions by this ONECUT family-specific arginine pair as well as the evolutionarily conserved residues are critical for optimal DNA binding and ONECUT2 transcriptional activity in a prostate cancer model. The evolutionarily conserved base interactions additionally determine the ONECUT2-DNA binding energetics. These findings provide insights into the cooperative DNA binding by CUT-homeodomain proteins.

Suggested Citation

  • Avradip Chatterjee & Brad Gallent & Madhusudhanarao Katiki & Chen Qian & Matthew R. Harter & Steve Silletti & Elizabeth A. Komives & Michael R. Freeman & Ramachandran Murali, 2024. "The homeodomain regulates stable DNA binding of prostate cancer target ONECUT2," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53159-8
    DOI: 10.1038/s41467-024-53159-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53159-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53159-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter D. Kwong & Richard Wyatt & James Robinson & Raymond W. Sweet & Joseph Sodroski & Wayne A. Hendrickson, 1998. "Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody," Nature, Nature, vol. 393(6686), pages 648-659, June.
    2. Haiyang Guo & Xinpei Ci & Musaddeque Ahmed & Junjie Tony Hua & Fraser Soares & Dong Lin & Loredana Puca & Aram Vosoughi & Hui Xue & Estelle Li & Peiran Su & Sujun Chen & Tran Nguyen & Yi Liang & Yuzhe, 2019. "ONECUT2 is a driver of neuroendocrine prostate cancer," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Zhang & Peng Wang & Nikitas Papangelopoulos & Ying Xu & Alessandro Sette & Philip E Bourne & Ole Lund & Julia Ponomarenko & Morten Nielsen & Bjoern Peters, 2010. "Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-10, February.
    2. Lingli Kong & Jianfang Liu & Meng Zhang & Zhuoyang Lu & Han Xue & Amy Ren & Jiankang Liu & Jinping Li & Wai Li Ling & Gang Ren, 2023. "Facile hermetic TEM grid preparation for molecular imaging of hydrated biological samples at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yanay Ofran & Burkhard Rost, 2007. "Protein–Protein Interaction Hotspots Carved into Sequences," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-8, July.
    4. Zhi Yang & Kim-Marie A. Dam & Michael D. Bridges & Magnus A. G. Hoffmann & Andrew T. DeLaitsch & Harry B. Gristick & Amelia Escolano & Rajeev Gautam & Malcolm A. Martin & Michel C. Nussenzweig & Wayne, 2022. "Neutralizing antibodies induced in immunized macaques recognize the CD4-binding site on an occluded-open HIV-1 envelope trimer," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Ignacio Fernández & Lasse Toftdal Dynesen & Youna Coquin & Riccardo Pederzoli & Delphine Brun & Ahmed Haouz & Antoine Gessain & Félix A. Rey & Florence Buseyne & Marija Backovic, 2023. "The crystal structure of a simian Foamy Virus receptor binding domain provides clues about entry into host cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Yue Deng & Yuqi Lin & Siyu Chen & Yuhang Xiang & Hongjia Chen & Shuyuan Qi & Hyung Suk Oh & Biswajit Das & Gloria Komazin-Meredith & Jean M. Pesola & David M. Knipe & Donald M. Coen & Dongli Pan, 2024. "Neuronal miR-9 promotes HSV-1 epigenetic silencing and latency by repressing Oct-1 and Onecut family genes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Jérémie Prévost & Yaozong Chen & Fei Zhou & William D. Tolbert & Romain Gasser & Halima Medjahed & Manon Nayrac & Dung N. Nguyen & Suneetha Gottumukkala & Ann J. Hessell & Venigalla B. Rao & Edwin Poz, 2023. "Structure-function analyses reveal key molecular determinants of HIV-1 CRF01_AE resistance to the entry inhibitor temsavir," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Jun Niu & Qi Wang & Wenwen Zhao & Bing Meng & Youwei Xu & Xianfang Zhang & Yi Feng & Qilian Qi & Yanling Hao & Xuan Zhang & Ying Liu & Jiangchao Xiang & Yiming Shao & Bei Yang, 2023. "Structures and immune recognition of Env trimers from two Asia prevalent HIV-1 CRFs," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Carsten Magnus & Roland R Regoes, 2010. "Estimating the Stoichiometry of HIV Neutralization," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-11, March.
    10. Hongjun Bai & Eric Lewitus & Yifan Li & Paul V. Thomas & Michelle Zemil & Mélanie Merbah & Caroline E. Peterson & Thujitha Thuraisamy & Phyllis A. Rees & Agnes Hajduczki & Vincent Dussupt & Bonnie Sli, 2024. "Contemporary HIV-1 consensus Env with AI-assisted redesigned hypervariable loops promote antibody binding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Zhao Wei & Song Wang & Yaning Xu & Wenzheng Wang & Fraser Soares & Musaddeque Ahmed & Ping Su & Tingting Wang & Elias Orouji & Xin Xu & Yong Zeng & Sujun Chen & Xiaoyu Liu & Tianwei Jia & Zhaojian Liu, 2023. "MYC reshapes CTCF-mediated chromatin architecture in prostate cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Aliana López de Victoria & Phanourios Tamamis & Chris A Kieslich & Dimitrios Morikis, 2012. "Insights into the Structure, Correlated Motions, and Electrostatic Properties of Two HIV-1 gp120 V3 Loops," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-15, November.
    13. Yang Yang & DeGruttola Victor, 2012. "Resampling-based Methods in Single and Multiple Testing for Equality of Covariance/Correlation Matrices," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-32, June.
    14. Linjing Zhu & Bilian Huang & Xiangyao Wang & Fengfeng Ni & Mingjun Ao & Ruoke Wang & Bin Zheng & Chen Chen & Jing Xue & Lin Zhu & Chenbo Yang & Lingen Shi & Shengya Geng & Jiaqian Hu & Mengshi Yang & , 2024. "Highly potent and broadly neutralizing anti-CD4 trimeric nanobodies inhibit HIV-1 infection by inducing CD4 conformational alteration," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Goutam Chakraborty & Kasmira Gupta & Natasha Kyprianou, 2023. "Epigenetic mechanisms underlying subtype heterogeneity and tumor recurrence in prostate cancer," Nature Communications, Nature, vol. 14(1), pages 1-4, December.
    16. Meixia Che & Aashi Chaturvedi & Sarah A. Munro & Samuel P. Pitzen & Alex Ling & Weijie Zhang & Josh Mentzer & Sheng-Yu Ku & Loredana Puca & Yanyun Zhu & Andries M. Bergman & Tesa M. Severson & Colleen, 2021. "Opposing transcriptional programs of KLF5 and AR emerge during therapy for advanced prostate cancer," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    17. Terrence M Dobrowsky & Brian R Daniels & Robert F Siliciano & Sean X Sun & Denis Wirtz, 2010. "Organization of Cellular Receptors into a Nanoscale Junction during HIV-1 Adhesion," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-14, July.
    18. Shixia Wang & Kun-Wei Chan & Danlan Wei & Xiuwen Ma & Shuying Liu & Guangnan Hu & Saeyoung Park & Ruimin Pan & Ying Gu & Alexandra F. Nazzari & Adam S. Olia & Kai Xu & Bob C. Lin & Mark K. Louder & Kr, 2024. "Human CD4-binding site antibody elicited by polyvalent DNA prime-protein boost vaccine neutralizes cross-clade tier-2-HIV strains," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Zifeng Wang & Scott L. Townley & Songqi Zhang & Mingyu Liu & Muqing Li & Maryam Labaf & Susan Patalano & Kavita Venkataramani & Kellee R. Siegfried & Jill A. Macoska & Dong Han & Shuai Gao & Gail P. R, 2024. "FOXA2 rewires AP-1 for transcriptional reprogramming and lineage plasticity in prostate cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53159-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.