IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52917-y.html
   My bibliography  Save this article

Transcription factor PATZ1 promotes adipogenesis by controlling promoter regulatory loci of adipogenic factors

Author

Listed:
  • Sanil Patel

    (Icahn School of Medicine at Mount Sinai)

  • Khatanzul Ganbold

    (Icahn School of Medicine at Mount Sinai)

  • Chung Hwan Cho

    (Icahn School of Medicine at Mount Sinai)

  • Juwairriyyah Siddiqui

    (Icahn School of Medicine at Mount Sinai)

  • Ramazan Yildiz

    (Icahn School of Medicine at Mount Sinai)

  • Njeri Sparman

    (Icahn School of Medicine at Mount Sinai)

  • Shani Sadeh

    (Icahn School of Medicine at Mount Sinai)

  • Christy M. Nguyen

    (University of California)

  • Jiexin Wang

    (University of California)

  • Julian P. Whitelegge

    (University of California)

  • Susan K. Fried

    (Icahn School of Medicine at Mount Sinai)

  • Hironori Waki

    (Akita University)

  • Claudio J. Villanueva

    (University of California)

  • Marcus M. Seldin

    (University of California)

  • Shinya Sakaguchi

    (Institute of Immunology)

  • Wilfried Ellmeier

    (Institute of Immunology)

  • Peter Tontonoz

    (University of California)

  • Prashant Rajbhandari

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

Abstract

White adipose tissue (WAT) is essential for lipid storage and systemic energy homeostasis. Understanding adipocyte formation and stability is key to developing therapies for obesity and metabolic disorders. Through a high-throughput cDNA screen, we identified PATZ1, a POZ/BTB and AT-Hook Containing Zinc Finger 1 protein, as an important adipogenic transcription factor. PATZ1 is expressed in human and mouse adipocyte precursor cells (APCs) and adipocytes. In cellular models, PATZ1 promotes adipogenesis via protein-protein interactions and DNA binding. PATZ1 ablation in mouse adipocytes and APCs leads to a reduced APC pool, decreased fat mass, and hypertrophied adipocytes. ChIP-Seq and RNA-seq analyses show that PATZ1 supports adipogenesis by interacting with transcriptional machinery at the promoter regions of key early adipogenic factors. Mass-spec results show that PATZ1 associates with GTF2I, with GTF2I modulating PATZ1’s function during differentiation. These findings underscore PATZ1’s regulatory role in adipocyte differentiation and adiposity, offering insights into adipose tissue development.

Suggested Citation

  • Sanil Patel & Khatanzul Ganbold & Chung Hwan Cho & Juwairriyyah Siddiqui & Ramazan Yildiz & Njeri Sparman & Shani Sadeh & Christy M. Nguyen & Jiexin Wang & Julian P. Whitelegge & Susan K. Fried & Hiro, 2024. "Transcription factor PATZ1 promotes adipogenesis by controlling promoter regulatory loci of adipogenic factors," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52917-y
    DOI: 10.1038/s41467-024-52917-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52917-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52917-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rana K. Gupta & Zoltan Arany & Patrick Seale & Rina J. Mepani & Li Ye & Heather M. Conroe & Yang A. Roby & Heather Kulaga & Randall R. Reed & Bruce M. Spiegelman, 2010. "Transcriptional control of preadipocyte determination by Zfp423," Nature, Nature, vol. 464(7288), pages 619-623, March.
    2. Margo P. Emont & Christopher Jacobs & Adam L. Essene & Deepti Pant & Danielle Tenen & Georgia Colleluori & Angelica Vincenzo & Anja M. Jørgensen & Hesam Dashti & Adam Stefek & Elizabeth McGonagle & So, 2022. "A single-cell atlas of human and mouse white adipose tissue," Nature, Nature, vol. 603(7903), pages 926-933, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Hao Wang & Tadataka Tsuji & Li-Hong Wu & Cheng-Ying Yang & Tian Lian Huang & Mari Sato & Farnaz Shamsi & Yu-Hua Tseng, 2024. "Endothelin 3/EDNRB signaling induces thermogenic differentiation of white adipose tissue," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Shuai Yan & Anna Santoro & Micah J. Niphakis & Antonio M. Pinto & Christopher L. Jacobs & Rasheed Ahmad & Radu M. Suciu & Bryan R. Fonslow & Rachel A. Herbst-Graham & Nhi Ngo & Cassandra L. Henry & Dy, 2024. "Inflammation causes insulin resistance in mice via interferon regulatory factor 3 (IRF3)-mediated reduction in FAHFA levels," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Martin Uhrbom & Lars Muhl & Guillem Genové & Jianping Liu & Henrik Palmgren & Ida Alexandersson & Fredrik Karlsson & Alex-Xianghua Zhou & Sandra Lunnerdal & Sonja Gustafsson & Byambajav Buyandelger & , 2024. "Adipose stem cells are sexually dimorphic cells with dual roles as preadipocytes and resident fibroblasts," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Lucas Massier & Jutta Jalkanen & Merve Elmastas & Jiawei Zhong & Tongtong Wang & Pamela A. Nono Nankam & Scott Frendo-Cumbo & Jesper Bäckdahl & Narmadha Subramanian & Takuya Sekine & Alastair G. Kerr , 2023. "An integrated single cell and spatial transcriptomic map of human white adipose tissue," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Isabel Reinisch & Helene Michenthaler & Alba Sulaj & Elisabeth Moyschewitz & Jelena Krstic & Markus Galhuber & Ruonan Xu & Zina Riahi & Tongtong Wang & Nemanja Vujic & Melina Amor & Riccardo Zenezini , 2024. "Adipocyte p53 coordinates the response to intermittent fasting by regulating adipose tissue immune cell landscape," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    6. Lin Qi & Marko Groeger & Aditi Sharma & Ishan Goswami & Erzhen Chen & Fenmiao Zhong & Apsara Ram & Kevin Healy & Edward C. Hsiao & Holger Willenbring & Andreas Stahl, 2024. "Adipocyte inflammation is the primary driver of hepatic insulin resistance in a human iPSC-based microphysiological system," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Sang Mun Han & Eun Seo Park & Jeu Park & Hahn Nahmgoong & Yoon Ha Choi & Jiyoung Oh & Kyung Min Yim & Won Taek Lee & Yun Kyung Lee & Yong Geun Jeon & Kyung Cheul Shin & Jin Young Huh & Sung Hee Choi &, 2023. "Unique adipose tissue invariant natural killer T cell subpopulations control adipocyte turnover in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Nadège Gruel & Chloé Quignot & Laëtitia Lesage & Sophie El Zein & Sylvie Bonvalot & Dimitri Tzanis & Khadija Ait Rais & Fabien Quinquis & Bastien Manciot & Julien Vibert & Nadine El Tannir & Ahmed Dah, 2024. "Cellular origin and clonal evolution of human dedifferentiated liposarcoma," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Tadataka Tsuji & Vladimir Tolstikov & Yang Zhang & Tian Lian Huang & Henrique Camara & Meghan Halpin & Niven R. Narain & King-Wai Yau & Matthew D. Lynes & Michael A. Kiebish & Yu-Hua Tseng, 2024. "Light-responsive adipose-hypothalamus axis controls metabolic regulation," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Matthew C. Sinton & Praveena R. G. Chandrasegaran & Paul Capewell & Anneli Cooper & Alex Girard & John Ogunsola & Georgia Perona-Wright & Dieudonné M Ngoyi & Nono Kuispond & Bruno Bucheton & Mamadou C, 2023. "IL-17 signalling is critical for controlling subcutaneous adipose tissue dynamics and parasite burden during chronic murine Trypanosoma brucei infection," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    11. Hongdong Wang & Yanhua Du & Shanshan Huang & Xitai Sun & Youqiong Ye & Haixiang Sun & Xuehui Chu & Xiaodong Shan & Yue Yuan & Lei Shen & Yan Bi, 2024. "Single-cell analysis reveals a subpopulation of adipose progenitor cells that impairs glucose homeostasis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Suyang Wu & Chen Qiu & Jiahao Ni & Wenli Guo & Jiyuan Song & Xingyin Yang & Yulin Sun & Yanjun Chen & Yunxia Zhu & Xiaoai Chang & Peng Sun & Chunxia Wang & Kai Li & Xiao Han, 2024. "M2 macrophages independently promote beige adipogenesis via blocking adipocyte Ets1," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Benjamin M. Steiner & Abigail M. Benvie & Derek Lee & Yuwei Jiang & Daniel C. Berry, 2024. "Cxcr4 regulates a pool of adipocyte progenitors and contributes to adiposity in a sex-dependent manner," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    14. Aina Lluch & Jessica Latorre & Angela Serena-Maione & Isabel Espadas & Estefanía Caballano-Infantes & José M. Moreno-Navarrete & Núria Oliveras-Cañellas & Wifredo Ricart & María M. Malagón & Alejandro, 2023. "Impaired Plakophilin-2 in obesity breaks cell cycle dynamics to breed adipocyte senescence," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    15. Andreas Fønss Møller & Jesper Grud Skat Madsen, 2023. "JOINTLY: interpretable joint clustering of single-cell transcriptomes," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Cheoljun Choi & Yujin L. Jeong & Koung-Min Park & Minji Kim & Sangseob Kim & Honghyun Jo & Sumin Lee & Heeseong Kim & Garam Choi & Yoon Ha Choi & Je Kyung Seong & Sik Namgoong & Yeonseok Chung & Young, 2024. "TM4SF19-mediated control of lysosomal activity in macrophages contributes to obesity-induced inflammation and metabolic dysfunction," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52917-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.