IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52698-4.html
   My bibliography  Save this article

Robust palladium oxide nano-cluster catalysts using atomic ions and strong interactions for high-performance methane oxidation

Author

Listed:
  • Seung-Hee Ryu

    (Korea Institute of Materials Science (KIMS)
    Pukyong National University)

  • Seungeun Kim

    (Korea Advanced Institute of Science and Technology)

  • Hyunjoo Lee

    (Korea Advanced Institute of Science and Technology)

  • Joon-Hwan Choi

    (Korea Institute of Materials Science (KIMS))

  • Hojin Jeong

    (Korea Institute of Materials Science (KIMS))

Abstract

Optimizing metal catalyst structures to achieve desired states is vital for efficient surface reactions, yet remains challenging due to the lack of well-defined precursor materials and weak metal-support interaction. Palladium-based catalysts, when not properly tailored for complete methane oxidation exhibit insufficient performance. Herein, we fabricate Pd oxide nano-clusters supported on SSZ-13 using atomic ions with strong metal-support interaction (SMSI). Steam treatment of Pd/SSZ-13 transforms Pd particles into ions and induces SMSI. Subsequently, CO reduction and O2 oxidation yield mildly sintered Pd oxide nano-clusters firmly anchored on extra-framework Alpenta sites of SSZ-13, facilitating superior activity. The robustness from SMSI prevents irreversible deactivation, and water-resistance by complete dehydration suppresses reversible degradation in wet conditions. This catalyst exhibits high performance in bench-scale reactions using monolith catalysts, ensuring applicability for industrial methane abatement. The results demonstrate that sequential treatment to Pd/SSZ-13 offers a promising approach for tailoring metal structures to enable high-performance methane oxidation.

Suggested Citation

  • Seung-Hee Ryu & Seungeun Kim & Hyunjoo Lee & Joon-Hwan Choi & Hojin Jeong, 2024. "Robust palladium oxide nano-cluster catalysts using atomic ions and strong interactions for high-performance methane oxidation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52698-4
    DOI: 10.1038/s41467-024-52698-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52698-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52698-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zichun Wang & Yijiao Jiang & Olivier Lafon & Julien Trébosc & Kyung Duk Kim & Catherine Stampfl & Alfons Baiker & Jean-Paul Amoureux & Jun Huang, 2016. "Brønsted acid sites based on penta-coordinated aluminum species," Nature Communications, Nature, vol. 7(1), pages 1-5, December.
    2. Núria. J. Divins & Andrea Braga & Xavier Vendrell & Isabel Serrano & Xènia Garcia & Lluís Soler & Ilaria Lucentini & Maila Danielis & Andrea Mussio & Sara Colussi & Ignacio J. Villar-Garcia & Carlos E, 2022. "Investigation of the evolution of Pd-Pt supported on ceria for dry and wet methane oxidation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Hongpan Rong & Shufang Ji & Jiatao Zhang & Dingsheng Wang & Yadong Li, 2020. "Synthetic strategies of supported atomic clusters for heterogeneous catalysis," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    4. Zihao Zhang & Jinshu Tian & Yubing Lu & Shize Yang & Dong Jiang & Weixin Huang & Yixiao Li & Jiyun Hong & Adam S. Hoffman & Simon R. Bare & Mark H. Engelhard & Abhaya K. Datye & Yong Wang, 2023. "Memory-dictated dynamics of single-atom Pt on CeO2 for CO oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Xinyi Yang & Wanqing Song & Kang Liao & Xiaoyang Wang & Xin Wang & Jinfeng Zhang & Haozhi Wang & Yanan Chen & Ning Yan & Xiaopeng Han & Jia Ding & Wenbin Hu, 2024. "Cohesive energy discrepancy drives the fabrication of multimetallic atomically dispersed materials for hydrogen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Chenhui Zhou & Jia Shi & Zhaoqi Dong & Lingyou Zeng & Yan Chen & Ying Han & Lu Li & Wenyu Zhang & Qinghua Zhang & Lin Gu & Fan Lv & Mingchuan Luo & Shaojun Guo, 2024. "Oxophilic gallium single atoms bridged ruthenium clusters for practical anion-exchange membrane electrolyzer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Yunan Li & Lingling Guo & Meng Du & Chen Tian & Gui Zhao & Zhengwu Liu & Zhenye Liang & Kunming Hou & Junxiang Chen & Xi Liu & Luozhen Jiang & Bing Nan & Lina Li, 2024. "Unraveling distinct effects between CuOx and PtCu alloy sites in Pt−Cu bimetallic catalysts for CO oxidation at different temperatures," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Noussan, Michel & Negro, Viviana & Prussi, Matteo & Chiaramonti, David, 2024. "The potential role of biomethane for the decarbonization of transport: An analysis of 2030 scenarios in Italy," Applied Energy, Elsevier, vol. 355(C).
    6. Qianhong Wang & Keng Sang & Changwei Liu & Zhihua Zhang & Wenyao Chen & Te Ji & Lina Li & Cheng Lian & Gang Qian & Jing Zhang & Xinggui Zhou & Weikang Yuan & Xuezhi Duan, 2024. "Nanoparticles as an antidote for poisoned gold single-atom catalysts in sustainable propylene epoxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Yufei Zhao & Priyank V. Kumar & Xin Tan & Xinxin Lu & Xiaofeng Zhu & Junjie Jiang & Jian Pan & Shibo Xi & Hui Ying Yang & Zhipeng Ma & Tao Wan & Dewei Chu & Wenjie Jiang & Sean C. Smith & Rose Amal & , 2022. "Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52698-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.