IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37776-3.html
   My bibliography  Save this article

Memory-dictated dynamics of single-atom Pt on CeO2 for CO oxidation

Author

Listed:
  • Zihao Zhang

    (Pacific Northwest National Laboratory
    Washington State University)

  • Jinshu Tian

    (Pacific Northwest National Laboratory)

  • Yubing Lu

    (Pacific Northwest National Laboratory)

  • Shize Yang

    (Arizona State University)

  • Dong Jiang

    (Washington State University)

  • Weixin Huang

    (Washington State University)

  • Yixiao Li

    (Washington State University)

  • Jiyun Hong

    (SLAC National Accelerator Laboratory)

  • Adam S. Hoffman

    (SLAC National Accelerator Laboratory)

  • Simon R. Bare

    (SLAC National Accelerator Laboratory)

  • Mark H. Engelhard

    (Pacific Northwest National Laboratory)

  • Abhaya K. Datye

    (University of New Mexico)

  • Yong Wang

    (Pacific Northwest National Laboratory
    Washington State University)

Abstract

Single atoms of platinum group metals on CeO2 represent a potential approach to lower precious metal requirements for automobile exhaust treatment catalysts. Here we show the dynamic evolution of two types of single-atom Pt (Pt1) on CeO2, i.e., adsorbed Pt1 in Pt/CeO2 and square planar Pt1 in PtATCeO2, fabricated at 500 °C and by atom-trapping method at 800 °C, respectively. Adsorbed Pt1 in Pt/CeO2 is mobile with the in situ formation of few-atom Pt clusters during CO oxidation, contributing to high reactivity with near-zero reaction order in CO. In contrast, square planar Pt1 in PtATCeO2 is strongly anchored to the support during CO oxidation leading to relatively low reactivity with a positive reaction order in CO. Reduction of both Pt/CeO2 and PtATCeO2 in CO transforms Pt1 to Pt nanoparticles. However, both catalysts retain the memory of their initial Pt1 state after reoxidative treatments, which illustrates the importance of the initial single-atom structure in practical applications.

Suggested Citation

  • Zihao Zhang & Jinshu Tian & Yubing Lu & Shize Yang & Dong Jiang & Weixin Huang & Yixiao Li & Jiyun Hong & Adam S. Hoffman & Simon R. Bare & Mark H. Engelhard & Abhaya K. Datye & Yong Wang, 2023. "Memory-dictated dynamics of single-atom Pt on CeO2 for CO oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37776-3
    DOI: 10.1038/s41467-023-37776-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37776-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37776-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang-Gang Wang & Donghai Mei & Vassiliki-Alexandra Glezakou & Jun Li & Roger Rousseau, 2015. "Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    2. Sharon Mitchell & Javier Pérez-Ramírez, 2020. "Single atom catalysis: a decade of stunning progress and the promise for a bright future," Nature Communications, Nature, vol. 11(1), pages 1-3, December.
    3. Hui Wang & Jin-Xun Liu & Lawrence F. Allard & Sungsik Lee & Jilei Liu & Hang Li & Jianqiang Wang & Jun Wang & Se H. Oh & Wei Li & Maria Flytzani-Stephanopoulos & Meiqing Shen & Bryan R. Goldsmith & Mi, 2019. "Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles E. Creissen & Marc Fontecave, 2022. "Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    2. Manu Suvarna & Alain Claude Vaucher & Sharon Mitchell & Teodoro Laino & Javier Pérez-Ramírez, 2023. "Language models and protocol standardization guidelines for accelerating synthesis planning in heterogeneous catalysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Yufei Zhao & Priyank V. Kumar & Xin Tan & Xinxin Lu & Xiaofeng Zhu & Junjie Jiang & Jian Pan & Shibo Xi & Hui Ying Yang & Zhipeng Ma & Tao Wan & Dewei Chu & Wenjie Jiang & Sean C. Smith & Rose Amal & , 2022. "Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Khandelwal, Akshat & Maarisetty, Dileep & Baral, Saroj Sundar, 2022. "Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Hui Xin & Rongtan Li & Le Lin & Rentao Mu & Mingrun Li & Dan Li & Qiang Fu & Xinhe Bao, 2024. "Reverse water gas-shift reaction product driven dynamic activation of molybdenum nitride catalyst surface," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Limei Qin & Jie Gan & Dechao Niu & Yueqiang Cao & Xuezhi Duan & Xing Qin & Hao Zhang & Zheng Jiang & Yongjun Jiang & Sheng Dai & Yongsheng Li & Jianlin Shi, 2022. "Interfacial-confined coordination to single-atom nanotherapeutics," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37776-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.