Investigation of the evolution of Pd-Pt supported on ceria for dry and wet methane oxidation
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-32765-4
Download full text from publisher
References listed on IDEAS
- Peters, Jeffrey C., 2017. "Natural gas and spillover from the US Clean Power Plan into the Paris Agreement," Energy Policy, Elsevier, vol. 106(C), pages 41-47.
- Andrey W. Petrov & Davide Ferri & Frank Krumeich & Maarten Nachtegaal & Jeroen A. van Bokhoven & Oliver Kröcher, 2018. "Stable complete methane oxidation over palladium based zeolite catalysts," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
- Núria J. Divins & David Kordus & Janis Timoshenko & Ilya Sinev & Ioannis Zegkinoglou & Arno Bergmann & See Wee Chee & Simon Widrinna & Osman Karslıoğlu & Hemma Mistry & Mauricio Lopez Luna & Jian Qian, 2021. "Operando high-pressure investigation of size-controlled CuZn catalysts for the methanol synthesis reaction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Noussan, Michel & Negro, Viviana & Prussi, Matteo & Chiaramonti, David, 2024. "The potential role of biomethane for the decarbonization of transport: An analysis of 2030 scenarios in Italy," Applied Energy, Elsevier, vol. 355(C).
- Seung-Hee Ryu & Seungeun Kim & Hyunjoo Lee & Joon-Hwan Choi & Hojin Jeong, 2024. "Robust palladium oxide nano-cluster catalysts using atomic ions and strong interactions for high-performance methane oxidation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shunsaku Yasumura & Kenichiro Saita & Takumi Miyakage & Ken Nagai & Kenichi Kon & Takashi Toyao & Zen Maeno & Tetsuya Taketsugu & Ken-ichi Shimizu, 2023. "Designing main-group catalysts for low-temperature methane combustion by ozone," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Shengnan Yue & C. S. Praveen & Alexander Klyushin & Alexey Fedorov & Masahiro Hashimoto & Qian Li & Travis Jones & Panpan Liu & Wenqian Yu & Marc-Georg Willinger & Xing Huang, 2024. "Redox dynamics and surface structures of an active palladium catalyst during methane oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Wang, Yangjie & Chen, Xiaohong & Ren, Shenggang, 2019. "Clean energy adoption and maternal health: Evidence from China," Energy Economics, Elsevier, vol. 84(C).
- Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.
- Martínez, Beatriz & Torró, Hipòlit, 2018.
"Hedging spark spread risk with futures,"
Energy Policy, Elsevier, vol. 113(C), pages 731-746.
- Beatriz Martínez Martínez & Hipolit Torro Enguix, 2017. "Hedging spark spread risk with futures," Working Papers. Serie EC 2017-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
- Hao Meng & Yusen Yang & Tianyao Shen & Zhiming Yin & Lei Wang & Wei Liu & Pan Yin & Zhen Ren & Lirong Zheng & Jian Zhang & Feng-Shou Xiao & Min Wei, 2023. "Designing Cu0−Cu+ dual sites for improved C−H bond fracture towards methanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- He, Li & Fan, Yilin & Bellettre, Jérôme & Yue, Jun & Luo, Lingai, 2020. "A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Si Woo Lee & Mauricio Lopez Luna & Nikolay Berdunov & Weiming Wan & Sebastian Kunze & Shamil Shaikhutdinov & Beatriz Roldan Cuenya, 2023. "Unraveling surface structures of gallium promoted transition metal catalysts in CO2 hydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
- Chen, Yang & Shao, Shuai & Fan, Meiting & Tian, Zhihua & Yang, Lili, 2022. "One man's loss is another's gain: Does clean energy development reduce CO2 emissions in China? Evidence based on the spatial Durbin model," Energy Economics, Elsevier, vol. 107(C).
- Philipp Keller & Michael A. Reiter & Patrick Kiefer & Thomas Gassler & Lucas Hemmerle & Philipp Christen & Elad Noor & Julia A. Vorholt, 2022. "Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Sigmund Jensen & Mathias H. R. Mammen & Martin Hedevang & Zheshen Li & Lutz Lammich & Jeppe V. Lauritsen, 2024. "Visualizing the gas-sensitive structure of the CuZn surface in methanol synthesis catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Hao Chen & Ling He & Jiachuan Chen & Bo Yuan & Teng Huang & Qi Cui, 2019. "Impacts of Clean Energy Substitution for Polluting Fossil-Fuels in Terminal Energy Consumption on the Economy and Environment in China," Sustainability, MDPI, vol. 11(22), pages 1-29, November.
- Runping Ye & Lixuan Ma & Jianing Mao & Xinyao Wang & Xiaoling Hong & Alessandro Gallo & Yanfu Ma & Wenhao Luo & Baojun Wang & Riguang Zhang & Melis Seher Duyar & Zheng Jiang & Jian Liu, 2024. "A Ce-CuZn catalyst with abundant Cu/Zn-OV-Ce active sites for CO2 hydrogenation to methanol," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
- Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Nakayama, Masayuki & Coronas, Alberto, 2019. "Fluids selection and performance analysis of a polygeneration plant with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 176(C), pages 1020-1036.
- Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J., 2018. "Less than 2°C? An Economic-Environmental Evaluation of the Paris Agreement," Ecological Economics, Elsevier, vol. 146(C), pages 69-84.
- Chen, Jinyu & Liang, Zhipeng & Ding, Qian & Liu, Zhenhua, 2022. "Extreme spillovers among fossil energy, clean energy, and metals markets: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 107(C).
- Guo, Jiaqi & Long, Shaobo & Luo, Weijie, 2022. "Nonlinear effects of climate policy uncertainty and financial speculation on the global prices of oil and gas," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Brown, Stephen P.A., 2017. "Natural gas vs. oil in U.S. transportation: Will prices confer an advantage to natural gas?," Energy Policy, Elsevier, vol. 110(C), pages 210-221.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32765-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.