IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52681-z.html
   My bibliography  Save this article

A structural rationale for reversible vs irreversible amyloid fibril formation from a single protein

Author

Listed:
  • Lukas Frey

    (ETH Zürich)

  • Jiangtao Zhou

    (Department of Health Sciences and Technology)

  • Gea Cereghetti

    (ETH Zurich
    Department of Chemistry)

  • Marco E. Weber

    (ETH Zürich)

  • David Rhyner

    (ETH Zürich)

  • Aditya Pokharna

    (ETH Zürich)

  • Luca Wenchel

    (ETH Zürich)

  • Harindranath Kadavath

    (ETH Zürich)

  • Yiping Cao

    (Shanghai Jiao Tong University)

  • Beat H. Meier

    (ETH Zürich)

  • Matthias Peter

    (ETH Zurich)

  • Jason Greenwald

    (ETH Zürich)

  • Roland Riek

    (ETH Zürich)

  • Raffaele Mezzenga

    (Department of Health Sciences and Technology
    Department of Materials)

Abstract

Reversible and irreversible amyloids are two diverging cases of protein (mis)folding associated with the cross-β motif in the protein folding and aggregation energy landscape. Yet, the molecular origins responsible for the formation of reversible vs irreversible amyloids have remained unknown. Here we provide evidence at the atomic level of distinct folding motifs for irreversible and reversible amyloids derived from a single protein sequence: human lysozyme. We compare the 2.8 Å structure of irreversible amyloid fibrils determined by cryo-electron microscopy helical reconstructions with molecular insights gained by solid-state NMR spectroscopy on reversible amyloids. We observe a canonical cross-β-sheet structure in irreversible amyloids, whereas in reversible amyloids, there is a less-ordered coexistence of β-sheet and helical secondary structures that originate from a partially unfolded lysozyme, thus carrying a “memory” of the original folded protein precursor. We also report the structure of hen egg-white lysozyme irreversible amyloids at 3.2 Å resolution, revealing another canonical amyloid fold, and reaffirming that irreversible amyloids undergo a complete conversion of the native protein into the cross-β structure. By combining atomic force microscopy, cryo-electron microscopy and solid-state NMR, we show that a full unfolding of the native protein precursor is a requirement for establishing irreversible amyloid fibrils.

Suggested Citation

  • Lukas Frey & Jiangtao Zhou & Gea Cereghetti & Marco E. Weber & David Rhyner & Aditya Pokharna & Luca Wenchel & Harindranath Kadavath & Yiping Cao & Beat H. Meier & Matthias Peter & Jason Greenwald & R, 2024. "A structural rationale for reversible vs irreversible amyloid fibril formation from a single protein," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52681-z
    DOI: 10.1038/s41467-024-52681-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52681-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52681-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael R. Sawaya & Shilpa Sambashivan & Rebecca Nelson & Magdalena I. Ivanova & Stuart A. Sievers & Marcin I. Apostol & Michael J. Thompson & Melinda Balbirnie & Jed J. W. Wiltzius & Heather T. McFar, 2007. "Atomic structures of amyloid cross-β spines reveal varied steric zippers," Nature, Nature, vol. 447(7143), pages 453-457, May.
    2. Jiahui Lu & Qin Cao & Michael P. Hughes & Michael R. Sawaya & David R. Boyer & Duilio Cascio & David S. Eisenberg, 2020. "CryoEM structure of the low-complexity domain of hnRNPA2 and its conversion to pathogenic amyloid," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Einav Tayeb-Fligelman & Jeannette T. Bowler & Christen E. Tai & Michael R. Sawaya & Yi Xiao Jiang & Gustavo Garcia & Sarah L. Griner & Xinyi Cheng & Lukasz Salwinski & Liisa Lutter & Paul M. Seidler &, 2023. "Low complexity domains of the nucleocapsid protein of SARS-CoV-2 form amyloid fibrils," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Robert Bücker & Carolin Seuring & Cornelia Cazey & Katharina Veith & Maria García-Alai & Kay Grünewald & Meytal Landau, 2022. "The Cryo-EM structures of two amphibian antimicrobial cross-β amyloid fibrils," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Dániel Horváth & Zsolt Dürvanger & Dóra K. Menyhárd & Máté Sulyok-Eiler & Fruzsina Bencs & Gergő Gyulai & Péter Horváth & Nóra Taricska & András Perczel, 2023. "Polymorphic amyloid nanostructures of hormone peptides involved in glucose homeostasis display reversible amyloid formation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Rosa Antón & Miguel Á. Treviño & David Pantoja-Uceda & Sara Félix & María Babu & Eurico J. Cabrita & Markus Zweckstetter & Philip Tinnefeld & Andrés M. Vera & Javier Oroz, 2024. "Alternative low-populated conformations prompt phase transitions in polyalanine repeat expansions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Javier Garcia-Pardo & Andrea Bartolomé-Nafría & Antonio Chaves-Sanjuan & Marcos Gil-Garcia & Cristina Visentin & Martino Bolognesi & Stefano Ricagno & Salvador Ventura, 2023. "Cryo-EM structure of hnRNPDL-2 fibrils, a functional amyloid associated with limb-girdle muscular dystrophy D3," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Andreas Bittracher & Johann Moschner & Beate Koksch & Roland Netz & Christof Schütte, 2021. "Exploring the locking stage of NFGAILS amyloid fibrillation via transition manifold analysis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-12, October.
    7. Thomas Heerde & Desiree Schütz & Yu-Jie Lin & Jan Münch & Matthias Schmidt & Marcus Fändrich, 2023. "Cryo-EM structure and polymorphic maturation of a viral transduction enhancing amyloid fibril," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52681-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.