IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40042-1.html
   My bibliography  Save this article

Cryo-EM structure and polymorphic maturation of a viral transduction enhancing amyloid fibril

Author

Listed:
  • Thomas Heerde

    (Ulm University)

  • Desiree Schütz

    (Ulm University Medical Center)

  • Yu-Jie Lin

    (Ulm University)

  • Jan Münch

    (Ulm University Medical Center)

  • Matthias Schmidt

    (Ulm University)

  • Marcus Fändrich

    (Ulm University)

Abstract

Amyloid fibrils have emerged as innovative tools to enhance the transduction efficiency of retroviral vectors in gene therapy strategies. In this study, we used cryo-electron microscopy to analyze the structure of a biotechnologically engineered peptide fibril that enhances retroviral infectivity. Our findings show that the peptide undergoes a time-dependent morphological maturation into polymorphic amyloid fibril structures. The fibrils consist of mated cross-β sheets that interact by the hydrophobic residues of the amphipathic fibril-forming peptide. The now available structural data help to explain the mechanism of retroviral infectivity enhancement, provide insights into the molecular plasticity of amyloid structures and illuminate the thermodynamic basis of their morphological maturation.

Suggested Citation

  • Thomas Heerde & Desiree Schütz & Yu-Jie Lin & Jan Münch & Matthias Schmidt & Marcus Fändrich, 2023. "Cryo-EM structure and polymorphic maturation of a viral transduction enhancing amyloid fibril," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40042-1
    DOI: 10.1038/s41467-023-40042-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40042-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40042-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael R. Sawaya & Shilpa Sambashivan & Rebecca Nelson & Magdalena I. Ivanova & Stuart A. Sievers & Marcin I. Apostol & Michael J. Thompson & Melinda Balbirnie & Jed J. W. Wiltzius & Heather T. McFar, 2007. "Atomic structures of amyloid cross-β spines reveal varied steric zippers," Nature, Nature, vol. 447(7143), pages 453-457, May.
    2. Akanksha Bansal & Matthias Schmidt & Matthies Rennegarbe & Christian Haupt & Falk Liberta & Sabrina Stecher & Ioana Puscalau-Girtu & Alexander Biedermann & Marcus Fändrich, 2021. "AA amyloid fibrils from diseased tissue are structurally different from in vitro formed SAA fibrils," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Rebecca Nelson & Michael R. Sawaya & Melinda Balbirnie & Anders Ø. Madsen & Christian Riekel & Robert Grothe & David Eisenberg, 2005. "Structure of the cross-β spine of amyloid-like fibrils," Nature, Nature, vol. 435(7043), pages 773-778, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Banerjee & Rajiv K Kar & Aritreyee Datta & Krupakar Parthasarathi & Subhrangsu Chatterjee & Kali P Das & Anirban Bhunia, 2013. "Use of a Small Peptide Fragment as an Inhibitor of Insulin Fibrillation Process: A Study by High and Low Resolution Spectroscopy," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-15, August.
    2. Massih Khorvash & Nick Blinov & Carol Ladner-Keay & Jie Lu & Judith M Silverman & Ebrima Gibbs & Yu Tian Wang & Andriy Kovalenko & David Wishart & Neil R Cashman, 2020. "Molecular interactions between monoclonal oligomer-specific antibody 5E3 and its amyloid beta cognates," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-35, May.
    3. Kübra Kaygisiz & Lena Rauch-Wirth & Arghya Dutta & Xiaoqing Yu & Yuki Nagata & Tristan Bereau & Jan Münch & Christopher V. Synatschke & Tanja Weil, 2023. "Data-mining unveils structure–property–activity correlation of viral infectivity enhancing self-assembling peptides," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Vishruth Mullapudi & Jaime Vaquer-Alicea & Vaibhav Bommareddy & Anthony R. Vega & Bryan D. Ryder & Charles L. White & Marc. I. Diamond & Lukasz A. Joachimiak, 2023. "Network of hotspot interactions cluster tau amyloid folds," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Andreas Bittracher & Johann Moschner & Beate Koksch & Roland Netz & Christof Schütte, 2021. "Exploring the locking stage of NFGAILS amyloid fibrillation via transition manifold analysis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-12, October.
    6. Dániel Horváth & Zsolt Dürvanger & Dóra K. Menyhárd & Máté Sulyok-Eiler & Fruzsina Bencs & Gergő Gyulai & Péter Horváth & Nóra Taricska & András Perczel, 2023. "Polymorphic amyloid nanostructures of hormone peptides involved in glucose homeostasis display reversible amyloid formation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Deena M A Gendoo & Paul M Harrison, 2011. "Origins and Evolution of the HET-s Prion-Forming Protein: Searching for Other Amyloid-Forming Solenoids," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-12, November.
    8. Andrew C Gill, 2014. "β-Hairpin-Mediated Formation of Structurally Distinct Multimers of Neurotoxic Prion Peptides," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-17, January.
    9. Einav Tayeb-Fligelman & Jeannette T. Bowler & Christen E. Tai & Michael R. Sawaya & Yi Xiao Jiang & Gustavo Garcia & Sarah L. Griner & Xinyi Cheng & Lukasz Salwinski & Liisa Lutter & Paul M. Seidler &, 2023. "Low complexity domains of the nucleocapsid protein of SARS-CoV-2 form amyloid fibrils," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Robert Bücker & Carolin Seuring & Cornelia Cazey & Katharina Veith & Maria García-Alai & Kay Grünewald & Meytal Landau, 2022. "The Cryo-EM structures of two amphibian antimicrobial cross-β amyloid fibrils," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Allen W Bryan Jr. & Matthew Menke & Lenore J Cowen & Susan L Lindquist & Bonnie Berger, 2009. "BETASCAN: Probable β-amyloids Identified by Pairwise Probabilistic Analysis," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-11, March.
    12. Sanne Abeln & Michele Vendruscolo & Christopher M Dobson & Daan Frenkel, 2014. "A Simple Lattice Model That Captures Protein Folding, Aggregation and Amyloid Formation," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-8, January.
    13. Martin Wilkinson & Rodrigo U. Gallardo & Roberto Maya Martinez & Nicolas Guthertz & Masatomo So & Liam D. Aubrey & Sheena E. Radford & Neil A. Ranson, 2023. "Disease-relevant β2-microglobulin variants share a common amyloid fold," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Tim Schulte & Antonio Chaves-Sanjuan & Giulia Mazzini & Valentina Speranzini & Francesca Lavatelli & Filippo Ferri & Carlo Palizzotto & Maria Mazza & Paolo Milani & Mario Nuvolone & Anne-Cathrine Vogt, 2022. "Cryo-EM structure of ex vivo fibrils associated with extreme AA amyloidosis prevalence in a cat shelter," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Kartikay Sharma & Fabian Stockert & Jayakrishna Shenoy & Mélanie Berbon & Muhammed Bilal Abdul-Shukkoor & Birgit Habenstein & Antoine Loquet & Matthias Schmidt & Marcus Fändrich, 2024. "Cryo-EM observation of the amyloid key structure of polymorphic TDP-43 amyloid fibrils," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Lukas Frey & Jiangtao Zhou & Gea Cereghetti & Marco E. Weber & David Rhyner & Aditya Pokharna & Luca Wenchel & Harindranath Kadavath & Yiping Cao & Beat H. Meier & Matthias Peter & Jason Greenwald & R, 2024. "A structural rationale for reversible vs irreversible amyloid fibril formation from a single protein," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Lynn Radamaker & Sara Karimi-Farsijani & Giada Andreotti & Julian Baur & Matthias Neumann & Sarah Schreiner & Natalie Berghaus & Raoul Motika & Christian Haupt & Paul Walther & Volker Schmidt & Stefan, 2021. "Role of mutations and post-translational modifications in systemic AL amyloidosis studied by cryo-EM," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40042-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.