IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37865-3.html
   My bibliography  Save this article

Low complexity domains of the nucleocapsid protein of SARS-CoV-2 form amyloid fibrils

Author

Listed:
  • Einav Tayeb-Fligelman

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

  • Jeannette T. Bowler

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

  • Christen E. Tai

    (UCLA
    UCLA)

  • Michael R. Sawaya

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

  • Yi Xiao Jiang

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

  • Gustavo Garcia

    (UCLA)

  • Sarah L. Griner

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

  • Xinyi Cheng

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

  • Lukasz Salwinski

    (UCLA
    UCLA
    UCLA)

  • Liisa Lutter

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

  • Paul M. Seidler

    (UCLA
    UCLA
    University of Southern California School of Pharmacy)

  • Jiahui Lu

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

  • Gregory M. Rosenberg

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

  • Ke Hou

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

  • Romany Abskharon

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

  • Hope Pan

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

  • Chih-Te Zee

    (UCLA)

  • David R. Boyer

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

  • Yan Li

    (UCLA
    UCLA)

  • Daniel H. Anderson

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

  • Kevin A. Murray

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

  • Genesis Falcon

    (UCLA)

  • Duilio Cascio

    (UCLA)

  • Lorena Saelices

    (UCLA
    UCLA
    University of Texas Southwestern Medical Center)

  • Robert Damoiseaux

    (UCLA
    UCLA
    UCLA
    UCLA)

  • Vaithilingaraja Arumugaswami

    (UCLA
    UCLA
    UCLA)

  • Feng Guo

    (UCLA
    UCLA
    UCLA)

  • David S. Eisenberg

    (UCLA
    UCLA
    UCLA
    Howard Hughes Medical Institute)

Abstract

The self-assembly of the Nucleocapsid protein (NCAP) of SARS-CoV-2 is crucial for its function. Computational analysis of the amino acid sequence of NCAP reveals low-complexity domains (LCDs) akin to LCDs in other proteins known to self-assemble as phase separation droplets and amyloid fibrils. Previous reports have described NCAP’s propensity to phase-separate. Here we show that the central LCD of NCAP is capable of both, phase separation and amyloid formation. Within this central LCD we identified three adhesive segments and determined the atomic structure of the fibrils formed by each. Those structures guided the design of G12, a peptide that interferes with the self-assembly of NCAP and demonstrates antiviral activity in SARS-CoV-2 infected cells. Our work, therefore, demonstrates the amyloid form of the central LCD of NCAP and suggests that amyloidogenic segments of NCAP could be targeted for drug development.

Suggested Citation

  • Einav Tayeb-Fligelman & Jeannette T. Bowler & Christen E. Tai & Michael R. Sawaya & Yi Xiao Jiang & Gustavo Garcia & Sarah L. Griner & Xinyi Cheng & Lukasz Salwinski & Liisa Lutter & Paul M. Seidler &, 2023. "Low complexity domains of the nucleocapsid protein of SARS-CoV-2 form amyloid fibrils," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37865-3
    DOI: 10.1038/s41467-023-37865-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37865-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37865-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael R. Sawaya & Shilpa Sambashivan & Rebecca Nelson & Magdalena I. Ivanova & Stuart A. Sievers & Marcin I. Apostol & Michael J. Thompson & Melinda Balbirnie & Jed J. W. Wiltzius & Heather T. McFar, 2007. "Atomic structures of amyloid cross-β spines reveal varied steric zippers," Nature, Nature, vol. 447(7143), pages 453-457, May.
    2. Shan Lu & Qiaozhen Ye & Digvijay Singh & Yong Cao & Jolene K. Diedrich & John R. Yates & Elizabeth Villa & Don W. Cleveland & Kevin D. Corbett, 2021. "The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Mirren Charnley & Saba Islam & Guneet K. Bindra & Jeremy Engwirda & Julian Ratcliffe & Jiangtao Zhou & Raffaele Mezzenga & Mark D. Hulett & Kyunghoon Han & Joshua T. Berryman & Nicholas P. Reynolds, 2022. "Neurotoxic amyloidogenic peptides in the proteome of SARS-COV2: potential implications for neurological symptoms in COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Stuart A. Sievers & John Karanicolas & Howard W. Chang & Anni Zhao & Lin Jiang & Onofrio Zirafi & Jason T. Stevens & Jan Münch & David Baker & David Eisenberg, 2011. "Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation," Nature, Nature, vol. 475(7354), pages 96-100, July.
    5. Jiahui Lu & Qin Cao & Michael P. Hughes & Michael R. Sawaya & David R. Boyer & Duilio Cascio & David S. Eisenberg, 2020. "CryoEM structure of the low-complexity domain of hnRNPA2 and its conversion to pathogenic amyloid," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    6. Adriana Savastano & Alain Ibáñez de Opakua & Marija Rankovic & Markus Zweckstetter, 2020. "Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang Ren & Shuai Wang & Zhi Zong & Ting Pan & Sijia Liu & Wei Mao & Huizhe Huang & Xiaohua Yan & Bing Yang & Xin He & Fangfang Zhou & Long Zhang, 2024. "TRIM28-mediated nucleocapsid protein SUMOylation enhances SARS-CoV-2 virulence," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Siwen Long & Mykhailo Guzyk & Laura Perez Vidakovics & Xiao Han & Renhua Sun & Megan Wang & Marc D. Panas & Egon Urgard & Jonathan M. Coquet & Andres Merits & Adnane Achour & Gerald M. McInerney, 2024. "SARS-CoV-2 N protein recruits G3BP to double membrane vesicles to promote translation of viral mRNAs," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Robert Bücker & Carolin Seuring & Cornelia Cazey & Katharina Veith & Maria García-Alai & Kay Grünewald & Meytal Landau, 2022. "The Cryo-EM structures of two amphibian antimicrobial cross-β amyloid fibrils," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Sophie Marianne Korn & Karthikeyan Dhamotharan & Cy M. Jeffries & Andreas Schlundt, 2023. "The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5’-genomic RNA elements," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Lukas Frey & Jiangtao Zhou & Gea Cereghetti & Marco E. Weber & David Rhyner & Aditya Pokharna & Luca Wenchel & Harindranath Kadavath & Yiping Cao & Beat H. Meier & Matthias Peter & Jason Greenwald & R, 2024. "A structural rationale for reversible vs irreversible amyloid fibril formation from a single protein," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Mirren Charnley & Saba Islam & Guneet K. Bindra & Jeremy Engwirda & Julian Ratcliffe & Jiangtao Zhou & Raffaele Mezzenga & Mark D. Hulett & Kyunghoon Han & Joshua T. Berryman & Nicholas P. Reynolds, 2022. "Neurotoxic amyloidogenic peptides in the proteome of SARS-COV2: potential implications for neurological symptoms in COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Taniya Bhardwaj & Kundlik Gadhave & Shivani K. Kapuganti & Prateek Kumar & Zacharias Faidon Brotzakis & Kumar Udit Saumya & Namyashree Nayak & Ankur Kumar & Richa Joshi & Bodhidipra Mukherjee & Aparna, 2023. "Amyloidogenic proteins in the SARS-CoV and SARS-CoV-2 proteomes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Javier Garcia-Pardo & Andrea Bartolomé-Nafría & Antonio Chaves-Sanjuan & Marcos Gil-Garcia & Cristina Visentin & Martino Bolognesi & Stefano Ricagno & Salvador Ventura, 2023. "Cryo-EM structure of hnRNPDL-2 fibrils, a functional amyloid associated with limb-girdle muscular dystrophy D3," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. William E. Arter & Runzhang Qi & Nadia A. Erkamp & Georg Krainer & Kieran Didi & Timothy J. Welsh & Julia Acker & Jonathan Nixon-Abell & Seema Qamar & Jordina Guillén-Boixet & Titus M. Franzmann & Dav, 2022. "Biomolecular condensate phase diagrams with a combinatorial microdroplet platform," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Andreas Bittracher & Johann Moschner & Beate Koksch & Roland Netz & Christof Schütte, 2021. "Exploring the locking stage of NFGAILS amyloid fibrillation via transition manifold analysis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-12, October.
    11. Dániel Horváth & Zsolt Dürvanger & Dóra K. Menyhárd & Máté Sulyok-Eiler & Fruzsina Bencs & Gergő Gyulai & Péter Horváth & Nóra Taricska & András Perczel, 2023. "Polymorphic amyloid nanostructures of hormone peptides involved in glucose homeostasis display reversible amyloid formation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Rosa Antón & Miguel Á. Treviño & David Pantoja-Uceda & Sara Félix & María Babu & Eurico J. Cabrita & Markus Zweckstetter & Philip Tinnefeld & Andrés M. Vera & Javier Oroz, 2024. "Alternative low-populated conformations prompt phase transitions in polyalanine repeat expansions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Guizhao Liang & Yonglan Liu & Bozhi Shi & Jun Zhao & Jie Zheng, 2013. "An Index for Characterization of Natural and Non-Natural Amino Acids for Peptidomimetics," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-16, July.
    14. Marc Oeller & Ryan J. D. Kang & Hannah L. Bolt & Ana L. Gomes dos Santos & Annika Langborg Weinmann & Antonios Nikitidis & Pavol Zlatoidsky & Wu Su & Werngard Czechtizky & Leonardo De Maria & Pietro S, 2023. "Sequence-based prediction of the intrinsic solubility of peptides containing non-natural amino acids," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Emilie Murigneux & Laurent Softic & Corentin Aubé & Carmen Grandi & Delphine Judith & Johanna Bruce & Morgane Le Gall & François Guillonneau & Alain Schmitt & Vincent Parissi & Clarisse Berlioz-Torren, 2024. "Proteomic analysis of SARS-CoV-2 particles unveils a key role of G3BP proteins in viral assembly," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Yunxi Liu & Nicolae Sapoval & Pilar Gallego-García & Laura Tomás & David Posada & Todd J. Treangen & Lauren B. Stadler, 2024. "Crykey: Rapid identification of SARS-CoV-2 cryptic mutations in wastewater," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Thomas Heerde & Desiree Schütz & Yu-Jie Lin & Jan Münch & Matthias Schmidt & Marcus Fändrich, 2023. "Cryo-EM structure and polymorphic maturation of a viral transduction enhancing amyloid fibril," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Zhikuan Zhang & Norimichi Nomura & Yukiko Muramoto & Toru Ekimoto & Tomoko Uemura & Kehong Liu & Moeko Yui & Nozomu Kono & Junken Aoki & Mitsunori Ikeguchi & Takeshi Noda & So Iwata & Umeharu Ohto & T, 2022. "Structure of SARS-CoV-2 membrane protein essential for virus assembly," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37865-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.