Atomic structures of amyloid cross-β spines reveal varied steric zippers
Author
Abstract
Suggested Citation
DOI: 10.1038/nature05695
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Thomas Heerde & Desiree Schütz & Yu-Jie Lin & Jan Münch & Matthias Schmidt & Marcus Fändrich, 2023. "Cryo-EM structure and polymorphic maturation of a viral transduction enhancing amyloid fibril," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Robert Bücker & Carolin Seuring & Cornelia Cazey & Katharina Veith & Maria García-Alai & Kay Grünewald & Meytal Landau, 2022. "The Cryo-EM structures of two amphibian antimicrobial cross-β amyloid fibrils," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Andreas Bittracher & Johann Moschner & Beate Koksch & Roland Netz & Christof Schütte, 2021. "Exploring the locking stage of NFGAILS amyloid fibrillation via transition manifold analysis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-12, October.
- Lukas Frey & Jiangtao Zhou & Gea Cereghetti & Marco E. Weber & David Rhyner & Aditya Pokharna & Luca Wenchel & Harindranath Kadavath & Yiping Cao & Beat H. Meier & Matthias Peter & Jason Greenwald & R, 2024. "A structural rationale for reversible vs irreversible amyloid fibril formation from a single protein," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Dániel Horváth & Zsolt Dürvanger & Dóra K. Menyhárd & Máté Sulyok-Eiler & Fruzsina Bencs & Gergő Gyulai & Péter Horváth & Nóra Taricska & András Perczel, 2023. "Polymorphic amyloid nanostructures of hormone peptides involved in glucose homeostasis display reversible amyloid formation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Einav Tayeb-Fligelman & Jeannette T. Bowler & Christen E. Tai & Michael R. Sawaya & Yi Xiao Jiang & Gustavo Garcia & Sarah L. Griner & Xinyi Cheng & Lukasz Salwinski & Liisa Lutter & Paul M. Seidler &, 2023. "Low complexity domains of the nucleocapsid protein of SARS-CoV-2 form amyloid fibrils," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:447:y:2007:i:7143:d:10.1038_nature05695. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.