IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52448-6.html
   My bibliography  Save this article

Context-dependent agricultural intensification pathways to increase rice production in India

Author

Listed:
  • Hari Sankar Nayak

    (Cornell University)

  • Andrew J. McDonald

    (Cornell University)

  • Virender Kumar

    (International Rice Research Institute (IRRI))

  • Peter Craufurd

    (South Asia Regional Office)

  • Shantanu Kumar Dubey

    (Indian Council of Agricultural Research (ICAR))

  • Amaresh Kumar Nayak

    (ICAR-National Rice Research Institute)

  • Chiter Mal Parihar

    (ICAR-Indian Agricultural Research Institute)

  • Panneerselvam Peramaiyan

    (International Rice Research Institute (IRRI) - South Asia Regional Centre (ISARC))

  • Shishpal Poonia

    (National Agricultural Science Complex (NASC))

  • Kindie Tesfaye

    (International Maize and Wheat Improvement Center (CIMMYT))

  • Ram K. Malik

    (National Agricultural Science Complex (NASC))

  • Anton Urfels

    (Cornell University
    International Rice Research Institute (IRRI)
    Wageningen University and Research)

  • Udham Singh Gautam

    (Indian Council of Agricultural Research (ICAR))

  • João Vasco Silva

    (International Maize and Wheat Improvement Center (CIMMYT))

Abstract

Yield gap analysis is used to characterize the untapped production potential of cropping systems. With emerging large-n agronomic datasets and data science methods, pathways for narrowing yield gaps can be identified that provide actionable insights into where and how cropping systems can be sustainably intensified. Here we characterize the contributing factors to rice yield gaps across seven Indian states, with a case study region used to assess the power of intervention targeting. Primary yield constraints in the case study region were nitrogen and irrigation, but scenario analysis suggests modest average yield gains with universal adoption of higher nitrogen rates. When nitrogen limited fields are targeted for practice change (47% of the sample), yield gains are predicted to double. When nitrogen and irrigation co-limitations are targeted (20% of the sample), yield gains more than tripled. Results suggest that analytics-led strategies for crop intensification can generate transformative advances in productivity, profitability, and environmental outcomes.

Suggested Citation

  • Hari Sankar Nayak & Andrew J. McDonald & Virender Kumar & Peter Craufurd & Shantanu Kumar Dubey & Amaresh Kumar Nayak & Chiter Mal Parihar & Panneerselvam Peramaiyan & Shishpal Poonia & Kindie Tesfaye, 2024. "Context-dependent agricultural intensification pathways to increase rice production in India," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52448-6
    DOI: 10.1038/s41467-024-52448-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52448-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52448-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
    2. Andrade, José F. & Mourtzinis, Spyridon & Rattalino Edreira, Juan I. & Conley, Shawn P. & Gaska, John & Kandel, Herman J. & Lindsey, Laura E. & Naeve, Seth & Nelson, Scott & Singh, Maninder P. & Thomp, 2022. "Field validation of a farmer supplied data approach to close soybean yield gaps in the US North Central region," Agricultural Systems, Elsevier, vol. 200(C).
    3. Saikai, Yuji & Patel, Vivak & Mitchell, Paul, 2020. "Machine learning for optimizing complex site-specific management," 2020 Conference (64th), February 12-14, 2020, Perth, Western Australia 305238, Australian Agricultural and Resource Economics Society.
    4. Fujisaka, Sam, 1994. "Learning from six reasons why farmers do not adopt innovations intended to improve sustainability of upland agriculture," Agricultural Systems, Elsevier, vol. 46(4), pages 409-425.
    5. Anton Urfels & Andrew J. McDonald & Timothy J. Krupnik & Pieter R. van Oel, 2020. "Drivers of groundwater utilization in water-limited rice production systems in Nepal," Water International, Taylor & Francis Journals, vol. 45(1), pages 39-59, January.
    6. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    7. Gatti, Nicolas & Cecil, Michael & Baylis, Kathy & Estes, Lyndon & Blekking, Jordan & Heckelei, Thomas & Vergopolan, Noemi & Evans, Tom, 2023. "Is closing the agricultural yield gap a “risky” endeavor?," Agricultural Systems, Elsevier, vol. 208(C).
    8. Davis, Kristin E., ed. & Babu, Suresh Chandra, ed. & Ragasa, Catherine, ed., 2020. "Agricultural extension: Global status and performance in selected countries," IFPRI books, International Food Policy Research Institute (IFPRI), number 9780896293755, October.
    9. Shen Yuan & Bruce A. Linquist & Lloyd T. Wilson & Kenneth G. Cassman & Alexander M. Stuart & Valerien Pede & Berta Miro & Kazuki Saito & Nurwulan Agustiani & Vina Eka Aristya & Leonardus Y. Krisnadi &, 2021. "Sustainable intensification for a larger global rice bowl," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Urfels, Anton & Mausch, Kai & Harris, Dave & McDonald, Andrew J. & Kishore, Avinash & Balwinder-Singh, & van Halsema, Gerardo & Struik, Paul C. & Craufurd, Peter & Foster, Timothy & Singh, Vartika & K, 2023. "Farm size limits agriculture's poverty reduction potential in Eastern India even with irrigation-led intensification," Agricultural Systems, Elsevier, vol. 207(C).
    2. Tianyi Qiu & Yu Shi & Josep Peñuelas & Ji Liu & Qingliang Cui & Jordi Sardans & Feng Zhou & Longlong Xia & Weiming Yan & Shuling Zhao & Shushi Peng & Jinshi Jian & Qinsi He & Wenju Zhang & Min Huang &, 2024. "Optimizing cover crop practices as a sustainable solution for global agroecosystem services," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Backer, David & Billing, Trey, 2024. "Forecasting the prevalence of child acute malnutrition using environmental and conflict conditions as leading indicators," World Development, Elsevier, vol. 176(C).
    4. Mariana Oliveira & Luís Torgo & Vítor Santos Costa, 2021. "Evaluation Procedures for Forecasting with Spatiotemporal Data," Mathematics, MDPI, vol. 9(6), pages 1-27, March.
    5. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    6. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    7. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    8. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    9. Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
    10. Jiamin Liu & Xiaoyu Ma & Bin Zhao & Qi Cui & Sisi Zhang & Jiaoning Zhang, 2023. "Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
    11. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    12. Otavio Ananias Pereira da Silva & Dayane Bortoloto da Silva & Marcelo Carvalho Minhoto Teixeira-Filho & Tays Batista Silva & Cid Naudi Silva Campos & Fabio Henrique Rojo Baio & Gileno Brito de Azevedo, 2023. "Macro- and Micronutrient Contents and Their Relationship with Growth in Six Eucalyptus Species," Sustainability, MDPI, vol. 15(22), pages 1-12, November.
    13. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    14. Anna Lungarska & Thierry Brunelle & Raja Chakir & Pierre‐Alain Jayet & Rémi Prudhomme & Stéphane De Cara & Jean‐Christophe Bureau, 2023. "Halving mineral nitrogen use in European agriculture: Insights from multi‐scale land‐use models," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1529-1550, September.
    15. Catherine Ragasa & Cristina Alvarez-Mingote & Paul McNamara, 2024. "Bottom-Up Approaches and Decentralized Extension Structures for Improving Access to and Quality of Extension Services and Technology Adoption: Multi-level Analysis from Malawi," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 36(5), pages 1093-1146, October.
    16. Chakravorty, Bhaskar & Arulampalam, Wiji & Bhatiya, Apurav Yash & Imbert, Clément & Rathelot, Roland, 2024. "Can information about jobs improve the effectiveness of vocational training? Experimental evidence from India," Journal of Development Economics, Elsevier, vol. 169(C).
    17. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    18. Albert Stuart Reece & Gary Kenneth Hulse, 2022. "European Epidemiological Patterns of Cannabis- and Substance-Related Congenital Neurological Anomalies: Geospatiotemporal and Causal Inferential Study," IJERPH, MDPI, vol. 20(1), pages 1-35, December.
    19. Foutzopoulos, Giorgos & Pandis, Nikolaos & Tsagris, Michail, 2024. "Predicting full retirement attainment of NBA players," MPRA Paper 121540, University Library of Munich, Germany.
    20. Michael Parzinger & Lucia Hanfstaengl & Ferdinand Sigg & Uli Spindler & Ulrich Wellisch & Markus Wirnsberger, 2020. "Residual Analysis of Predictive Modelling Data for Automated Fault Detection in Building’s Heating, Ventilation and Air Conditioning Systems," Sustainability, MDPI, vol. 12(17), pages 1-18, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52448-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.