Heterogeneity and transcriptome changes of human CD8+ T cells across nine decades of life
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-32869-x
Download full text from publisher
References listed on IDEAS
- Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
- Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Marjolein J. Peters & Roby Joehanes & Luke C. Pilling & Claudia Schurmann & Karen N. Conneely & Joseph Powell & Eva Reinmaa & George L. Sutphin & Alexandra Zhernakova & Katharina Schramm & Yana A. Wil, 2015. "The transcriptional landscape of age in human peripheral blood," Nature Communications, Nature, vol. 6(1), pages 1-14, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Florian Pargent & Florian Pfisterer & Janek Thomas & Bernd Bischl, 2022. "Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features," Computational Statistics, Springer, vol. 37(5), pages 2671-2692, November.
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
- Michael Bucker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2020. "Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring," Papers 2009.13384, arXiv.org.
- Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
- Fogliato Riccardo & Oliveira Natalia L. & Yurko Ronald, 2021. "TRAP: a predictive framework for the Assessment of Performance in Trail Running," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 129-143, June.
- Yadid M. Algavi & Elhanan Borenstein, 2023. "A data-driven approach for predicting the impact of drugs on the human microbiome," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Marc Jan Bonder & Stephen J. Clark & Felix Krueger & Siyuan Luo & João Agostinho de Sousa & Aida M. Hashtroud & Thomas M. Stubbs & Anne-Katrien Stark & Steffen Rulands & Oliver Stegle & Wolf Reik & Fe, 2024. "scEpiAge: an age predictor highlighting single-cell ageing heterogeneity in mouse blood," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Lauren P. Grant & Chris Gennings & Edmond P. Wickham & Derek Chapman & Shumei Sun & David C. Wheeler, 2018. "Modeling Pediatric Body Mass Index and Neighborhood Environment at Different Spatial Scales," IJERPH, MDPI, vol. 15(3), pages 1-19, March.
- Kouame, Anselme K.K. & Bindraban, Prem S. & Kissiedu, Isaac N. & Atakora, Williams K. & El Mejahed, Khalil, 2023. "Identifying drivers for variability in maize (Zea mays L.) yield in Ghana: A meta-regression approach," Agricultural Systems, Elsevier, vol. 209(C).
- Foutzopoulos, Giorgos & Pandis, Nikolaos & Tsagris, Michail, 2024. "Predicting full retirement attainment of NBA players," MPRA Paper 121540, University Library of Munich, Germany.
- Joshua P White & Simon Dennis & Martin Tomko & Jessica Bell & Stephan Winter, 2021. "Paths to social licence for tracking-data analytics in university research and services," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-19, May.
- Jack S. Gisby & Norzawani B. Buang & Artemis Papadaki & Candice L. Clarke & Talat H. Malik & Nicholas Medjeral-Thomas & Damiola Pinheiro & Paige M. Mortimer & Shanice Lewis & Eleanor Sandhu & Stephen , 2022. "Multi-omics identify falling LRRC15 as a COVID-19 severity marker and persistent pro-thrombotic signals in convalescence," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
- Lundberg, Ian & Brand, Jennie E. & Jeon, Nanum, 2022. "Researcher reasoning meets computational capacity: Machine learning for social science," SocArXiv s5zc8, Center for Open Science.
- Heather E Wheeler & Kaanan P Shah & Jonathon Brenner & Tzintzuni Garcia & Keston Aquino-Michaels & GTEx Consortium & Nancy J Cox & Dan L Nicolae & Hae Kyung Im, 2016. "Survey of the Heritability and Sparse Architecture of Gene Expression Traits across Human Tissues," PLOS Genetics, Public Library of Science, vol. 12(11), pages 1-23, November.
- Ma, Shaohui & Fildes, Robert, 2021. "Retail sales forecasting with meta-learning," European Journal of Operational Research, Elsevier, vol. 288(1), pages 111-128.
- Gaia Molinaro & Irene Cogliati Dezza & Sarah Katharina Bühler & Christina Moutsiana & Tali Sharot, 2023. "Multifaceted information-seeking motives in children," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Vanessa Ress & Eva‐Maria Wild, 2024. "The impact of integrated care on health care utilization and costs in a socially deprived urban area in Germany: A difference‐in‐differences approach within an event‐study framework," Health Economics, John Wiley & Sons, Ltd., vol. 33(2), pages 229-247, February.
- Andreas Floren & Tobias Müller, 2023. "Using a Machine Learning Approach to Classify the Degree of Forest Management," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32869-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.