IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52173-0.html
   My bibliography  Save this article

A human Tau expressing zebrafish model of progressive supranuclear palsy identifies Brd4 as a regulator of microglial synaptic elimination

Author

Listed:
  • Qing Bai

    (University of Pittsburgh
    University of Pittsburgh)

  • Enhua Shao

    (University of Pittsburgh
    University of Pittsburgh
    Tsinghua University School of Medicine)

  • Denglei Ma

    (University of Pittsburgh
    University of Pittsburgh)

  • Binxuan Jiao

    (University of Pittsburgh
    University of Pittsburgh
    Tsinghua University School of Medicine)

  • Seth D. Scheetz

    (University of Pittsburgh
    University of Pittsburgh)

  • Karen A. Hartnett-Scott

    (University of Pittsburgh
    University of Pittsburgh)

  • Vladimir A. Ilin

    (University of Pittsburgh
    University of Pittsburgh)

  • Elias Aizenman

    (University of Pittsburgh
    University of Pittsburgh)

  • Julia Kofler

    (University of Pittsburgh
    University of Pittsburgh)

  • Edward A. Burton

    (University of Pittsburgh
    University of Pittsburgh
    Pittsburgh VA Healthcare System)

Abstract

Progressive supranuclear palsy (PSP) is an incurable neurodegenerative disease characterized by 4-repeat (0N/4R)-Tau protein accumulation in CNS neurons. We generated transgenic zebrafish expressing human 0N/4R-Tau to investigate PSP pathophysiology. Tau zebrafish replicated multiple features of PSP, including: decreased survival; hypokinesia; impaired optokinetic responses; neurodegeneration; neuroinflammation; synapse loss; and Tau hyperphosphorylation, misfolding, mislocalization, insolubility, truncation, and oligomerization. Using automated assays, we screened 147 small molecules for activity in rescuing neurological deficits in Tau zebrafish. (+)JQ1, a bromodomain inhibitor, improved hypokinesia, survival, microgliosis, and brain synapse elimination. A heterozygous brd4+/− mutant reducing expression of the bromodomain protein Brd4 similarly rescued these phenotypes. Microglial phagocytosis of synaptic material was decreased by (+)JQ1 in both Tau zebrafish and rat primary cortical cultures. Microglia in human PSP brains expressed Brd4. Our findings implicate Brd4 as a regulator of microglial synaptic elimination in tauopathy and provide an unbiased approach for identifying mechanisms and therapeutic targets in PSP.

Suggested Citation

  • Qing Bai & Enhua Shao & Denglei Ma & Binxuan Jiao & Seth D. Scheetz & Karen A. Hartnett-Scott & Vladimir A. Ilin & Elias Aizenman & Julia Kofler & Edward A. Burton, 2024. "A human Tau expressing zebrafish model of progressive supranuclear palsy identifies Brd4 as a regulator of microglial synaptic elimination," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52173-0
    DOI: 10.1038/s41467-024-52173-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52173-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52173-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mike Hutton & Corinne L. Lendon & Patrizia Rizzu & Matt Baker & Susanne Froelich & Henry Houlden & Stuart Pickering-Brown & Sumi Chakraverty & Adrian Isaacs & Andrew Grover & Jennifer Hackett & Jennif, 1998. "Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17," Nature, Nature, vol. 393(6686), pages 702-705, June.
    2. Yuhao Min & Xue Wang & Özkan İş & Tulsi A. Patel & Junli Gao & Joseph S. Reddy & Zachary S. Quicksall & Thuy Nguyen & Shu Lin & Frederick Q. Tutor-New & Jessica L. Chalk & Adriana O. Mitchell & Julia , 2023. "Cross species systems biology discovers glial DDR2, STOM, and KANK2 as therapeutic targets in progressive supranuclear palsy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Axel Weber & Sigrid C. Schwarz & Jörg Tost & Dietrich Trümbach & Pia Winter & Florence Busato & Pawel Tacik & Anita C. Windhorst & Maud Fagny & Thomas Arzberger & Catriona McLean & John C. Swieten & J, 2018. "Epigenome-wide DNA methylation profiling in Progressive Supranuclear Palsy reveals major changes at DLX1," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    4. Alix de Calignon & Leora M. Fox & Rose Pitstick & George A. Carlson & Brian J. Bacskai & Tara L. Spires-Jones & Bradley T. Hyman, 2010. "Caspase activation precedes and leads to tangles," Nature, Nature, vol. 464(7292), pages 1201-1204, April.
    5. Panagis Filippakopoulos & Jun Qi & Sarah Picaud & Yao Shen & William B. Smith & Oleg Fedorov & Elizabeth M. Morse & Tracey Keates & Tyler T. Hickman & Ildiko Felletar & Martin Philpott & Shonagh Munro, 2010. "Selective inhibition of BET bromodomains," Nature, Nature, vol. 468(7327), pages 1067-1073, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun-Yi Cho & Patrick H. O’Farrell, 2023. "Stepwise modifications of transcriptional hubs link pioneer factor activity to a burst of transcription," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Alexandra D’Oto & Jie Fang & Hongjian Jin & Beisi Xu & Shivendra Singh & Anoushka Mullasseril & Victoria Jones & Ahmed Abu-Zaid & Xinyu Buttlar & Bailey Cooke & Dongli Hu & Jason Shohet & Andrew J. Mu, 2021. "KDM6B promotes activation of the oncogenic CDK4/6-pRB-E2F pathway by maintaining enhancer activity in MYCN-amplified neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    3. Mengxue Zhou & Jiaxin Wang & Jiaxing Pan & Hui Wang & Lujia Huang & Bo Hou & Yi Lai & Fengyang Wang & Qingxiang Guan & Feng Wang & Zhiai Xu & Haijun Yu, 2023. "Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Luca Pinzi & Christian Conze & Nicolo Bisi & Gabriele Dalla Torre & Ahmed Soliman & Nanci Monteiro-Abreu & Nataliya I. Trushina & Andrea Krusenbaum & Maryam Khodaei Dolouei & Andrea Hellwig & Michael , 2024. "Quantitative live cell imaging of a tauopathy model enables the identification of a polypharmacological drug candidate that restores physiological microtubule interaction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Galina Limorenko & Meltem Tatli & Rajasekhar Kolla & Sergey Nazarov & Marie-Theres Weil & David C. Schöndorf & Daniela Geist & Peter Reinhardt & Dagmar E. Ehrnhoefer & Henning Stahlberg & Laura Gaspar, 2023. "Fully co-factor-free ClearTau platform produces seeding-competent Tau fibrils for reconstructing pathological Tau aggregates," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    6. Yuki Mori & Yoshino Akizuki & Rikuto Honda & Miyu Takao & Ayaka Tsuchimoto & Sota Hashimoto & Hiroaki Iio & Masakazu Kato & Ai Kaiho-Soma & Yasushi Saeki & Jun Hamazaki & Shigeo Murata & Toshikazu Ush, 2024. "Intrinsic signaling pathways modulate targeted protein degradation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Mengyu Liao & Xu Zhu & Yumei Lu & Xiaoping Yi & Youhui Hu & Yumeng Zhao & Zhisheng Ye & Xu Guo & Minghui Liang & Xin Jin & Hong Zhang & Xiaohong Wang & Ziming Zhao & Yupeng Chen & Hua Yan, 2024. "Multi-omics profiling of retinal pigment epithelium reveals enhancer-driven activation of RANK-NFATc1 signaling in traumatic proliferative vitreoretinopathy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Jeannine Diesch & Marguerite-Marie Le Pannérer & René Winkler & Raquel Casquero & Matthias Muhar & Mark van der Garde & Michael Maher & Carolina Martínez Herráez & Joan J. Bech-Serra & Michaela Fellne, 2021. "Inhibition of CBP synergizes with the RNA-dependent mechanisms of Azacitidine by limiting protein synthesis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. Victor Moreno & Maria Vieito & Juan Manuel Sepulveda & Vladimir Galvao & Tatiana Hernández-Guerrero & Bernard Doger & Omar Saavedra & Carmelo Carlo-Stella & Jean-Marie Michot & Antoine Italiano & Mass, 2023. "BET inhibitor trotabresib in heavily pretreated patients with solid tumors and diffuse large B-cell lymphomas," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. John K. Barrows & Baicheng Lin & Colleen E. Quaas & George Fullbright & Elizabeth N. Wallace & David T. Long, 2022. "BRD4 promotes resection and homology-directed repair of DNA double-strand breaks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Lorna A. Farrelly & Shuangping Zheng & Nadine Schrode & Aaron Topol & Natarajan V. Bhanu & Ryan M. Bastle & Aarthi Ramakrishnan & Jennifer C Chan & Bulent Cetin & Erin Flaherty & Li Shen & Kelly Gleas, 2022. "Chromatin profiling in human neurons reveals aberrant roles for histone acetylation and BET family proteins in schizophrenia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Peng Zou & Dongmin Fu & Haoyang Wang & Ruoyu Sun & Yu Lan & Yiyun Chen, 2024. "Photochemical 1,3-boronate rearrangement enables three-component N-alkylation for α-tertiary hydroxybenzylamine synthesis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Stella Amanda & Tze King Tan & Jolynn Zu Lin Ong & Madelaine Skolastika Theardy & Regina Wan Ju Wong & Xiao Zi Huang & Muhammad Zulfaqar Ali & Yan Li & Zhiyuan Gong & Hiroshi Inagaki & Ee Yong Foo & B, 2022. "IRF4 drives clonal evolution and lineage choice in a zebrafish model of T-cell lymphoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Phillip A. Kohl & Chaeyeon Song & Bretton J. Fletcher & Rebecca L. Best & Christine Tchounwou & Ximena Garcia Arceo & Peter J. Chung & Herbert P. Miller & Leslie Wilson & Myung Chul Choi & Youli Li & , 2024. "Complexes of tubulin oligomers and tau form a viscoelastic intervening network cross-bridging microtubules into bundles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Andrew J. Tao & Jiewei Jiang & Gillian E. Gadbois & Pavitra Goyal & Bridget T. Boyle & Elizabeth J. Mumby & Samuel A. Myers & Justin G. English & Fleur M. Ferguson, 2023. "A biotin targeting chimera (BioTAC) system to map small molecule interactomes in situ," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Laura Isigkeit & Espen Schallmayer & Romy Busch & Lorene Brunello & Amelie Menge & Lewis Elson & Susanne Müller & Stefan Knapp & Alexandra Stolz & Julian A. Marschner & Daniel Merk, 2024. "Chemogenomics for NR1 nuclear hormone receptors," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Sahar Harati & Lee A D Cooper & Josue D Moran & Felipe O Giuste & Yuhong Du & Andrei A Ivanov & Margaret A Johns & Fadlo R Khuri & Haian Fu & Carlos S Moreno, 2017. "MEDICI: Mining Essentiality Data to Identify Critical Interactions for Cancer Drug Target Discovery and Development," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-18, January.
    18. Jamshid Asadzadeh & Evelyne Ruchti & Wei Jiao & Greta Limoni & Catherine MacLachlan & Scott A. Small & Graham Knott & Ismael Santa-Maria & Brian D. McCabe, 2022. "Retromer deficiency in Tauopathy models enhances the truncation and toxicity of Tau," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Ying Liang & Haiyue Xu & Tao Cheng & Yujuan Fu & Hanwei Huang & Wenchang Qian & Junyan Wang & Yuenan Zhou & Pengxu Qian & Yafei Yin & Pengfei Xu & Wei Zou & Baohui Chen, 2022. "Gene activation guided by nascent RNA-bound transcription factors," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52173-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.