IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36976-1.html
   My bibliography  Save this article

BET inhibitor trotabresib in heavily pretreated patients with solid tumors and diffuse large B-cell lymphomas

Author

Listed:
  • Victor Moreno

    (Hospital Universitario Fundación Jimenez Diaz)

  • Maria Vieito

    (Vall d’Hebron Institute of Oncology (VHIO))

  • Juan Manuel Sepulveda

    (Hospital Universitario 12 de Octubre)

  • Vladimir Galvao

    (Vall d’Hebron Institute of Oncology (VHIO))

  • Tatiana Hernández-Guerrero

    (Hospital Universitario Fundación Jimenez Diaz)

  • Bernard Doger

    (Hospital Universitario Fundación Jimenez Diaz)

  • Omar Saavedra

    (Vall d’Hebron Institute of Oncology (VHIO))

  • Carmelo Carlo-Stella

    (Humanitas University, Rozzano
    Humanitas Research Hospital – IRCCS, Rozzano)

  • Jean-Marie Michot

    (Institut Gustave Roussy)

  • Antoine Italiano

    (Institut Bergonie Centre Regional de Lutte Contre Le Cancer de Bordeaux et Sud Ouest)

  • Massimo Magagnoli

    (Humanitas Research Hospital – IRCCS, Rozzano)

  • Cecilia Carpio

    (Vall d’Hebron Institute of Oncology (VHIO))

  • Antonio Pinto

    (Hematology-Oncology & Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS)

  • Rafael Sarmiento

    (Centre for Innovation and Translational Research Europe, a Bristol Myers Squibb Company)

  • Barbara Amoroso

    (Centre for Innovation and Translational Research Europe, a Bristol Myers Squibb Company)

  • Ida Aronchik

    (Bristol Myers Squibb)

  • Ellen Filvaroff

    (Bristol Myers Squibb)

  • Bishoy Hanna

    (Bristol Myers Squibb)

  • Xin Wei

    (Bristol Myers Squibb)

  • Zariana Nikolova

    (Centre for Innovation and Translational Research Europe, a Bristol Myers Squibb Company)

  • Irene Braña

    (Vall d’Hebron Institute of Oncology (VHIO))

Abstract

Bromodomain and extraterminal proteins (BET) play key roles in regulation of gene expression, and may play a role in cancer-cell proliferation, survival, and oncogenic progression. CC-90010-ST-001 (NCT03220347) is an open-label phase I study of trotabresib, an oral BET inhibitor, in heavily pretreated patients with advanced solid tumors and relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Primary endpoints were the safety, tolerability, maximum tolerated dose, and RP2D of trotabresib. Secondary endpoints were clinical benefit rate (complete response [CR] + partial response [PR] + stable disease [SD] of ≥4 months’ duration), objective response rate (CR + PR), duration of response or SD, progression-free survival, overall survival, and the pharmacokinetics (PK) of trotabresib. In addition, part C assessed the effects of food on the PK of trotabresib as a secondary endpoint. The dose escalation (part A) showed that trotabresib was well tolerated, had single-agent activity, and determined the recommended phase 2 dose (RP2D) and schedule for the expansion study. Here, we report long-term follow-up results from part A (N = 69) and data from patients treated with the RP2D of 45 mg/day 4 days on/24 days off or an alternate RP2D of 30 mg/day 3 days on/11 days off in the dose-expansion cohorts (parts B [N = 25] and C [N = 41]). Treatment-related adverse events (TRAEs) are reported in almost all patients. The most common severe TRAEs are hematological. Toxicities are generally manageable, allowing some patients to remain on treatment for ≥2 years, with two patients receiving ≥3 years of treatment. Trotabresib monotherapy shows antitumor activity, with an ORR of 13.0% (95% CI, 2.8–33.6) in patients with R/R DLBCL (part B) and an ORR of 0.0% (95% CI, 0.0–8.6) and a CBR of 31.7% (95% CI, 18.1–48.1) in patients with advanced solid tumors (part C). These results support further investigation of trotabresib in combination with other anticancer agents.

Suggested Citation

  • Victor Moreno & Maria Vieito & Juan Manuel Sepulveda & Vladimir Galvao & Tatiana Hernández-Guerrero & Bernard Doger & Omar Saavedra & Carmelo Carlo-Stella & Jean-Marie Michot & Antoine Italiano & Mass, 2023. "BET inhibitor trotabresib in heavily pretreated patients with solid tumors and diffuse large B-cell lymphomas," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36976-1
    DOI: 10.1038/s41467-023-36976-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36976-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36976-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Panagis Filippakopoulos & Jun Qi & Sarah Picaud & Yao Shen & William B. Smith & Oleg Fedorov & Elizabeth M. Morse & Tracey Keates & Tyler T. Hickman & Ildiko Felletar & Martin Philpott & Shonagh Munro, 2010. "Selective inhibition of BET bromodomains," Nature, Nature, vol. 468(7327), pages 1067-1073, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun-Yi Cho & Patrick H. O’Farrell, 2023. "Stepwise modifications of transcriptional hubs link pioneer factor activity to a burst of transcription," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Alexandra D’Oto & Jie Fang & Hongjian Jin & Beisi Xu & Shivendra Singh & Anoushka Mullasseril & Victoria Jones & Ahmed Abu-Zaid & Xinyu Buttlar & Bailey Cooke & Dongli Hu & Jason Shohet & Andrew J. Mu, 2021. "KDM6B promotes activation of the oncogenic CDK4/6-pRB-E2F pathway by maintaining enhancer activity in MYCN-amplified neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    3. Mengxue Zhou & Jiaxin Wang & Jiaxing Pan & Hui Wang & Lujia Huang & Bo Hou & Yi Lai & Fengyang Wang & Qingxiang Guan & Feng Wang & Zhiai Xu & Haijun Yu, 2023. "Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Yuki Mori & Yoshino Akizuki & Rikuto Honda & Miyu Takao & Ayaka Tsuchimoto & Sota Hashimoto & Hiroaki Iio & Masakazu Kato & Ai Kaiho-Soma & Yasushi Saeki & Jun Hamazaki & Shigeo Murata & Toshikazu Ush, 2024. "Intrinsic signaling pathways modulate targeted protein degradation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Mengyu Liao & Xu Zhu & Yumei Lu & Xiaoping Yi & Youhui Hu & Yumeng Zhao & Zhisheng Ye & Xu Guo & Minghui Liang & Xin Jin & Hong Zhang & Xiaohong Wang & Ziming Zhao & Yupeng Chen & Hua Yan, 2024. "Multi-omics profiling of retinal pigment epithelium reveals enhancer-driven activation of RANK-NFATc1 signaling in traumatic proliferative vitreoretinopathy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Jeannine Diesch & Marguerite-Marie Le Pannérer & René Winkler & Raquel Casquero & Matthias Muhar & Mark van der Garde & Michael Maher & Carolina Martínez Herráez & Joan J. Bech-Serra & Michaela Fellne, 2021. "Inhibition of CBP synergizes with the RNA-dependent mechanisms of Azacitidine by limiting protein synthesis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Qing Bai & Enhua Shao & Denglei Ma & Binxuan Jiao & Seth D. Scheetz & Karen A. Hartnett-Scott & Vladimir A. Ilin & Elias Aizenman & Julia Kofler & Edward A. Burton, 2024. "A human Tau expressing zebrafish model of progressive supranuclear palsy identifies Brd4 as a regulator of microglial synaptic elimination," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. John K. Barrows & Baicheng Lin & Colleen E. Quaas & George Fullbright & Elizabeth N. Wallace & David T. Long, 2022. "BRD4 promotes resection and homology-directed repair of DNA double-strand breaks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Lorna A. Farrelly & Shuangping Zheng & Nadine Schrode & Aaron Topol & Natarajan V. Bhanu & Ryan M. Bastle & Aarthi Ramakrishnan & Jennifer C Chan & Bulent Cetin & Erin Flaherty & Li Shen & Kelly Gleas, 2022. "Chromatin profiling in human neurons reveals aberrant roles for histone acetylation and BET family proteins in schizophrenia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Stella Amanda & Tze King Tan & Jolynn Zu Lin Ong & Madelaine Skolastika Theardy & Regina Wan Ju Wong & Xiao Zi Huang & Muhammad Zulfaqar Ali & Yan Li & Zhiyuan Gong & Hiroshi Inagaki & Ee Yong Foo & B, 2022. "IRF4 drives clonal evolution and lineage choice in a zebrafish model of T-cell lymphoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Andrew J. Tao & Jiewei Jiang & Gillian E. Gadbois & Pavitra Goyal & Bridget T. Boyle & Elizabeth J. Mumby & Samuel A. Myers & Justin G. English & Fleur M. Ferguson, 2023. "A biotin targeting chimera (BioTAC) system to map small molecule interactomes in situ," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Laura Isigkeit & Espen Schallmayer & Romy Busch & Lorene Brunello & Amelie Menge & Lewis Elson & Susanne Müller & Stefan Knapp & Alexandra Stolz & Julian A. Marschner & Daniel Merk, 2024. "Chemogenomics for NR1 nuclear hormone receptors," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Sahar Harati & Lee A D Cooper & Josue D Moran & Felipe O Giuste & Yuhong Du & Andrei A Ivanov & Margaret A Johns & Fadlo R Khuri & Haian Fu & Carlos S Moreno, 2017. "MEDICI: Mining Essentiality Data to Identify Critical Interactions for Cancer Drug Target Discovery and Development," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-18, January.
    14. Ying Liang & Haiyue Xu & Tao Cheng & Yujuan Fu & Hanwei Huang & Wenchang Qian & Junyan Wang & Yuenan Zhou & Pengxu Qian & Yafei Yin & Pengfei Xu & Wei Zou & Baohui Chen, 2022. "Gene activation guided by nascent RNA-bound transcription factors," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36976-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.