IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30053-9.html
   My bibliography  Save this article

IRF4 drives clonal evolution and lineage choice in a zebrafish model of T-cell lymphoma

Author

Listed:
  • Stella Amanda

    (National University of Singapore)

  • Tze King Tan

    (National University of Singapore)

  • Jolynn Zu Lin Ong

    (National University of Singapore)

  • Madelaine Skolastika Theardy

    (National University of Singapore)

  • Regina Wan Ju Wong

    (National University of Singapore)

  • Xiao Zi Huang

    (National University of Singapore)

  • Muhammad Zulfaqar Ali

    (National University of Singapore)

  • Yan Li

    (National University of Singapore)

  • Zhiyuan Gong

    (National University of Singapore)

  • Hiroshi Inagaki

    (Nagoya City University Graduate School of Medical Sciences)

  • Ee Yong Foo

    (National University of Singapore)

  • Brendan Pang

    (National University of Singapore)

  • Soo Yong Tan

    (National University of Singapore)

  • Shinsuke Iida

    (Nagoya City University Graduate School of Medical Sciences)

  • Takaomi Sanda

    (National University of Singapore
    National University of Singapore)

Abstract

IRF4 is a master regulator of immunity and is also frequently overexpressed in mature lymphoid neoplasms. Here, we demonstrate the oncogenicity of IRF4 in vivo, its potential effects on T-cell development and clonal evolution using a zebrafish model. IRF4-transgenic zebrafish develop aggressive tumors with massive infiltration of abnormal lymphocytes that spread to distal organs. Many late-stage tumors are mono- or oligoclonal, and tumor cells can expand in recipient animals after transplantation, demonstrating their malignancy. Mutation of p53 accelerates tumor onset, increases penetrance, and results in tumor heterogeneity. Surprisingly, single-cell RNA-sequencing reveals that the majority of tumor cells are double-negative T-cells, many of which express tcr-γ that became dominant as the tumors progress, whereas double-positive T-cells are largely diminished. Gene expression and epigenetic profiling demonstrates that gata3, mycb, lrrn1, patl1 and psip1 are specifically activated in tumors, while genes responsible for T-cell differentiation including id3 are repressed. IRF4-driven tumors are sensitive to the BRD inhibitor.

Suggested Citation

  • Stella Amanda & Tze King Tan & Jolynn Zu Lin Ong & Madelaine Skolastika Theardy & Regina Wan Ju Wong & Xiao Zi Huang & Muhammad Zulfaqar Ali & Yan Li & Zhiyuan Gong & Hiroshi Inagaki & Ee Yong Foo & B, 2022. "IRF4 drives clonal evolution and lineage choice in a zebrafish model of T-cell lymphoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30053-9
    DOI: 10.1038/s41467-022-30053-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30053-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30053-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sonya A. MacParland & Jeff C. Liu & Xue-Zhong Ma & Brendan T. Innes & Agata M. Bartczak & Blair K. Gage & Justin Manuel & Nicholas Khuu & Juan Echeverri & Ivan Linares & Rahul Gupta & Michael L. Cheng, 2018. "Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations," Nature Communications, Nature, vol. 9(1), pages 1-21, December.
    2. Arthur L. Shaffer & N. C. Tolga Emre & Laurence Lamy & Vu N. Ngo & George Wright & Wenming Xiao & John Powell & Sandeep Dave & Xin Yu & Hong Zhao & Yuxin Zeng & Bangzheng Chen & Joshua Epstein & Louis, 2008. "IRF4 addiction in multiple myeloma," Nature, Nature, vol. 454(7201), pages 226-231, July.
    3. Jay Daniels & Peter G. Doukas & Maria E. Martinez Escala & Kimberly G. Ringbloom & David J. H. Shih & Jingyi Yang & Kyle Tegtmeyer & Joonhee Park & Jane J. Thomas & Mehmet E. Selli & Can Altunbulakli , 2020. "Cellular origins and genetic landscape of cutaneous gamma delta T cell lymphomas," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    4. Ash A. Alizadeh & Michael B. Eisen & R. Eric Davis & Chi Ma & Izidore S. Lossos & Andreas Rosenwald & Jennifer C. Boldrick & Hajeer Sabet & Truc Tran & Xin Yu & John I. Powell & Liming Yang & Gerald E, 2000. "Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling," Nature, Nature, vol. 403(6769), pages 503-511, February.
    5. Johannes Zuber & Junwei Shi & Eric Wang & Amy R. Rappaport & Harald Herrmann & Edward A. Sison & Daniel Magoon & Jun Qi & Katharina Blatt & Mark Wunderlich & Meredith J. Taylor & Christopher Johns & A, 2011. "RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia," Nature, Nature, vol. 478(7370), pages 524-528, October.
    6. Panagis Filippakopoulos & Jun Qi & Sarah Picaud & Yao Shen & William B. Smith & Oleg Fedorov & Elizabeth M. Morse & Tracey Keates & Tyler T. Hickman & Ildiko Felletar & Martin Philpott & Shonagh Munro, 2010. "Selective inhibition of BET bromodomains," Nature, Nature, vol. 468(7327), pages 1067-1073, December.
    7. Caryn S. Ross-Innes & Rory Stark & Andrew E. Teschendorff & Kelly A. Holmes & H. Raza Ali & Mark J. Dunning & Gordon D. Brown & Ondrej Gojis & Ian O. Ellis & Andrew R. Green & Simak Ali & Suet-Feung C, 2012. "Differential oestrogen receptor binding is associated with clinical outcome in breast cancer," Nature, Nature, vol. 481(7381), pages 389-393, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun-Yi Cho & Patrick H. O’Farrell, 2023. "Stepwise modifications of transcriptional hubs link pioneer factor activity to a burst of transcription," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Sewell, Daniel K., 2018. "Visualizing data through curvilinear representations of matrices," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 255-270.
    3. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    5. Prendergast, Luke A. & Li Wai Suen, Connie, 2011. "A new and practical influence measure for subsets of covariance matrix sample principal components with applications to high dimensional datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 752-764, January.
    6. Nickole Moon & Christopher P. Morgan & Ruth Marx-Rattner & Alyssa Jeng & Rachel L. Johnson & Ijeoma Chikezie & Carmen Mannella & Mary D. Sammel & C. Neill Epperson & Tracy L. Bale, 2024. "Stress increases sperm respiration and motility in mice and men," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Mina Ogawa & Jia-Xin Jiang & Sunny Xia & Donghe Yang & Avrilynn Ding & Onofrio Laselva & Marcela Hernandez & Changyi Cui & Yuichiro Higuchi & Hiroshi Suemizu & Craig Dorrell & Markus Grompe & Christin, 2021. "Generation of functional ciliated cholangiocytes from human pluripotent stem cells," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    8. Sinan Xiong & Jianbiao Zhou & Tze King Tan & Tae-Hoon Chung & Tuan Zea Tan & Sabrina Hui-Min Toh & Nicole Xin Ning Tang & Yunlu Jia & Yi Xiang See & Melissa Jane Fullwood & Takaomi Sanda & Wee-Joo Chn, 2024. "Super enhancer acquisition drives expression of oncogenic PPP1R15B that regulates protein homeostasis in multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    9. Franziska Hildebrandt & Alma Andersson & Sami Saarenpää & Ludvig Larsson & Noémi Van Hul & Sachie Kanatani & Jan Masek & Ewa Ellis & Antonio Barragan & Annelie Mollbrink & Emma R. Andersson & Joakim L, 2021. "Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    10. Yawen Lei & Yaoguang Yu & Wei Fu & Tao Zhu & Caihong Wu & Zhihao Zhang & Zewang Yu & Xin Song & Jianqu Xu & Zhenwei Liang & Peitao Lü & Chenlong Li, 2024. "BCL7A and BCL7B potentiate SWI/SNF-complex-mediated chromatin accessibility to regulate gene expression and vegetative phase transition in plants," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Alexandra D’Oto & Jie Fang & Hongjian Jin & Beisi Xu & Shivendra Singh & Anoushka Mullasseril & Victoria Jones & Ahmed Abu-Zaid & Xinyu Buttlar & Bailey Cooke & Dongli Hu & Jason Shohet & Andrew J. Mu, 2021. "KDM6B promotes activation of the oncogenic CDK4/6-pRB-E2F pathway by maintaining enhancer activity in MYCN-amplified neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    12. Sonali Narang & Yohana Ghebrechristos & Nikki A. Evensen & Nina Murrell & Sylwia Jasinski & Talia H. Ostrow & David T. Teachey & Elizabeth A. Raetz & Timothee Lionnet & Matthew Witkowski & Iannis Aifa, 2024. "Clonal evolution of the 3D chromatin landscape in patients with relapsed pediatric B-cell acute lymphoblastic leukemia," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Mengxue Zhou & Jiaxin Wang & Jiaxing Pan & Hui Wang & Lujia Huang & Bo Hou & Yi Lai & Fengyang Wang & Qingxiang Guan & Feng Wang & Zhiai Xu & Haijun Yu, 2023. "Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Yanjiang Liu & Gongcheng Hu & Shengxiong Yang & Mingze Yao & Zicong Liu & Chenghong Yan & Yulin Wen & Wangfang Ping & Juehan Wang & Yawei Song & Xiaotao Dong & Guangjin Pan & Hongjie Yao, 2023. "Functional dissection of PRC1 subunits RYBP and YAF2 during neural differentiation of embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Andreas Lackner & Michael Müller & Magdalena Gamperl & Delyana Stoeva & Olivia Langmann & Henrieta Papuchova & Elisabeth Roitinger & Gerhard Dürnberger & Richard Imre & Karl Mechtler & Paulina A. Lato, 2023. "The Fgf/Erf/NCoR1/2 repressive axis controls trophoblast cell fate," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Congcong Tian & Jiaqi Zhou & Xinran Li & Yuan Gao & Qing Wen & Xing Kang & Nan Wang & Yuan Yao & Jiuhang Jiang & Guibing Song & Tianjun Zhang & Suili Hu & JingYi Liao & Chuanhe Yu & Zhiquan Wang & Xia, 2023. "Impaired histone inheritance promotes tumor progression," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Yandan Yang & Arnold Bolomsky & Thomas Oellerich & Ping Chen & Michele Ceribelli & Björn Häupl & George W. Wright & James D. Phelan & Da Wei Huang & James W. Lord & Callie K. Winkle & Xin Yu & Jan Wis, 2022. "Oncogenic RAS commandeers amino acid sensing machinery to aberrantly activate mTORC1 in multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Yong Yean Kim & Berkley E. Gryder & Ranuka Sinniah & Megan L. Peach & Jack F. Shern & Abdalla Abdelmaksoud & Silvia Pomella & Girma M. Woldemichael & Benjamin Z. Stanton & David Milewski & Joseph J. B, 2024. "KDM3B inhibitors disrupt the oncogenic activity of PAX3-FOXO1 in fusion-positive rhabdomyosarcoma," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    19. Rafik Salama & Norma Masson & Peter Simpson & Lina Katrin Sciesielski & Min Sun & Ya-Min Tian & Peter John Ratcliffe & David Robert Mole, 2015. "Heterogeneous Effects of Direct Hypoxia Pathway Activation in Kidney Cancer," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-19, August.
    20. Haoxi Chai & Harianto Tjong & Peng Li & Wei Liao & Ping Wang & Chee Hong Wong & Chew Yee Ngan & Warren J. Leonard & Chia-Lin Wei & Yijun Ruan, 2023. "ChIATAC is an efficient strategy for multi-omics mapping of 3D epigenomes from low-cell inputs," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30053-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.