IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45851-6.html
   My bibliography  Save this article

Quantitative live cell imaging of a tauopathy model enables the identification of a polypharmacological drug candidate that restores physiological microtubule interaction

Author

Listed:
  • Luca Pinzi

    (University of Modena and Reggio Emilia)

  • Christian Conze

    (School of Biology/Chemistry, Osnabrück University)

  • Nicolo Bisi

    (School of Biology/Chemistry, Osnabrück University)

  • Gabriele Dalla Torre

    (University of Modena and Reggio Emilia
    Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee)

  • Ahmed Soliman

    (School of Biology/Chemistry, Osnabrück University)

  • Nanci Monteiro-Abreu

    (School of Biology/Chemistry, Osnabrück University)

  • Nataliya I. Trushina

    (School of Biology/Chemistry, Osnabrück University)

  • Andrea Krusenbaum

    (School of Biology/Chemistry, Osnabrück University)

  • Maryam Khodaei Dolouei

    (School of Biology/Chemistry, Osnabrück University)

  • Andrea Hellwig

    (Interdisciplinary Center for Neurosciences, Heidelberg University)

  • Michael S. Christodoulou

    (University of Modena and Reggio Emilia
    University of Milan
    Environmental and Nutritional Sciences (DeFENS), University of Milan)

  • Daniele Passarella

    (University of Milan)

  • Lidia Bakota

    (School of Biology/Chemistry, Osnabrück University)

  • Giulio Rastelli

    (University of Modena and Reggio Emilia)

  • Roland Brandt

    (School of Biology/Chemistry, Osnabrück University
    Osnabrück University
    Osnabrück University)

Abstract

Tauopathies such as Alzheimer’s disease are characterized by aggregation and increased phosphorylation of the microtubule-associated protein tau. Tau’s pathological changes are closely linked to neurodegeneration, making tau a prime candidate for intervention. We developed an approach to monitor pathological changes of aggregation-prone human tau in living neurons. We identified 2-phenyloxazole (PHOX) derivatives as putative polypharmacological small molecules that interact with tau and modulate tau kinases. We found that PHOX15 inhibits tau aggregation, restores tau’s physiological microtubule interaction, and reduces tau phosphorylation at disease-relevant sites. Molecular dynamics simulations highlight cryptic channel-like pockets crossing tau protofilaments and suggest that PHOX15 binding reduces the protofilament’s ability to adopt a PHF-like conformation by modifying a key glycine triad. Our data demonstrate that live-cell imaging of a tauopathy model enables screening of compounds that modulate tau-microtubule interaction and allows identification of a promising polypharmacological drug candidate that simultaneously inhibits tau aggregation and reduces tau phosphorylation.

Suggested Citation

  • Luca Pinzi & Christian Conze & Nicolo Bisi & Gabriele Dalla Torre & Ahmed Soliman & Nanci Monteiro-Abreu & Nataliya I. Trushina & Andrea Krusenbaum & Maryam Khodaei Dolouei & Andrea Hellwig & Michael , 2024. "Quantitative live cell imaging of a tauopathy model enables the identification of a polypharmacological drug candidate that restores physiological microtubule interaction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45851-6
    DOI: 10.1038/s41467-024-45851-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45851-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45851-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mike Hutton & Corinne L. Lendon & Patrizia Rizzu & Matt Baker & Susanne Froelich & Henry Houlden & Stuart Pickering-Brown & Sumi Chakraverty & Adrian Isaacs & Andrew Grover & Jennifer Hackett & Jennif, 1998. "Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17," Nature, Nature, vol. 393(6686), pages 702-705, June.
    2. Yang Shi & Wenjuan Zhang & Yang Yang & Alexey G. Murzin & Benjamin Falcon & Abhay Kotecha & Mike Beers & Airi Tarutani & Fuyuki Kametani & Holly J. Garringer & Ruben Vidal & Grace I. Hallinan & Tammar, 2021. "Structure-based classification of tauopathies," Nature, Nature, vol. 598(7880), pages 359-363, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galina Limorenko & Meltem Tatli & Rajasekhar Kolla & Sergey Nazarov & Marie-Theres Weil & David C. Schöndorf & Daniela Geist & Peter Reinhardt & Dagmar E. Ehrnhoefer & Henning Stahlberg & Laura Gaspar, 2023. "Fully co-factor-free ClearTau platform produces seeding-competent Tau fibrils for reconstructing pathological Tau aggregates," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Tim Schulte & Antonio Chaves-Sanjuan & Valentina Speranzini & Kevin Sicking & Melissa Milazzo & Giulia Mazzini & Paola Rognoni & Serena Caminito & Paolo Milani & Chiara Marabelli & Alessandro Corbelli, 2024. "Helical superstructures between amyloid and collagen in cardiac fibrils from a patient with AL amyloidosis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Itika Saha & Patricia Yuste-Checa & Miguel Silva Padilha & Qiang Guo & Roman Körner & Hauke Holthusen & Victoria A. Trinkaus & Irina Dudanova & Rubén Fernández-Busnadiego & Wolfgang Baumeister & David, 2023. "The AAA+ chaperone VCP disaggregates Tau fibrils and generates aggregate seeds in a cellular system," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Sambhasan Banerjee & Julian Baur & Christoph Daniel & Peter Benedikt Pfeiffer & Manuel Hitzenberger & Lukas Kuhn & Sebastian Wiese & Johan Bijzet & Christian Haupt & Kerstin U. Amann & Martin Zacharia, 2022. "Amyloid fibril structure from the vascular variant of systemic AA amyloidosis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Nicolai Franzmeier & Matthias Brendel & Leonie Beyer & Luna Slemann & Gabor G. Kovacs & Thomas Arzberger & Carolin Kurz & Gesine Respondek & Milica J. Lukic & Davina Biel & Anna Rubinski & Lukas Front, 2022. "Tau deposition patterns are associated with functional connectivity in primary tauopathies," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Szymon W. Manka & Wenjuan Zhang & Adam Wenborn & Jemma Betts & Susan Joiner & Helen R. Saibil & John Collinge & Jonathan D. F. Wadsworth, 2022. "2.7 Å cryo-EM structure of ex vivo RML prion fibrils," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Vishruth Mullapudi & Jaime Vaquer-Alicea & Vaibhav Bommareddy & Anthony R. Vega & Bryan D. Ryder & Charles L. White & Marc. I. Diamond & Lukasz A. Joachimiak, 2023. "Network of hotspot interactions cluster tau amyloid folds," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Nikolaos Louros & Martin Wilkinson & Grigoria Tsaka & Meine Ramakers & Chiara Morelli & Teresa Garcia & Rodrigo Gallardo & Sam D’Haeyer & Vera Goossens & Dominique Audenaert & Dietmar Rudolf Thal & Ia, 2024. "Local structural preferences in shaping tau amyloid polymorphism," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Inbal Maniv & Mahasen Sarji & Anwar Bdarneh & Alona Feldman & Roi Ankawa & Elle Koren & Inbar Magid-Gold & Noa Reis & Despina Soteriou & Shiran Salomon-Zimri & Tali Lavy & Ellina Kesselman & Naama Koi, 2023. "Altered ubiquitin signaling induces Alzheimer’s disease-like hallmarks in a three-dimensional human neural cell culture model," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Benjamin C. Creekmore & Kathryn Kixmoeller & Ben E. Black & Edward B. Lee & Yi-Wei Chang, 2024. "Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Nathalie Kyalu Ngoie Zola & Clémence Balty & Sébastien Pyr dit Ruys & Axelle A. T. Vanparys & Nicolas D. G. Huyghe & Gaëtan Herinckx & Manuel Johanns & Emilien Boyer & Pascal Kienlen-Campard & Mark H., 2023. "Specific post-translational modifications of soluble tau protein distinguishes Alzheimer’s disease and primary tauopathies," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Peter Kunach & Jaime Vaquer-Alicea & Matthew S. Smith & Jim Monistrol & Robert Hopewell & Luc Moquin & Joseph Therriault & Cecile Tissot & Nesrine Rahmouni & Gassan Massarweh & Jean-Paul Soucy & Marie, 2024. "Cryo-EM structure of Alzheimer’s disease tau filaments with PET ligand MK-6240," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. Sukanta Jash & Sayani Banerjee & Shibin Cheng & Bin Wang & Chenxi Qiu & Asami Kondo & Jan Ernerudh & Xiao Zhen Zhou & Kun Ping Lu & Surendra Sharma, 2023. "Cis P-tau is a central circulating and placental etiologic driver and therapeutic target of preeclampsia," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Levent Sari & Sofia Bali & Lukasz A. Joachimiak & Milo M. Lin, 2024. "Hairpin trimer transition state of amyloid fibril," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Jinjian Hu & Wencheng Xia & Shuyi Zeng & Yeh-Jun Lim & Youqi Tao & Yunpeng Sun & Lang Zhao & Haosen Wang & Weidong Le & Dan Li & Shengnan Zhang & Cong Liu & Yan-Mei Li, 2024. "Phosphorylation and O-GlcNAcylation at the same α-synuclein site generate distinct fibril structures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Qing Bai & Enhua Shao & Denglei Ma & Binxuan Jiao & Seth D. Scheetz & Karen A. Hartnett-Scott & Vladimir A. Ilin & Elias Aizenman & Julia Kofler & Edward A. Burton, 2024. "A human Tau expressing zebrafish model of progressive supranuclear palsy identifies Brd4 as a regulator of microglial synaptic elimination," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    17. Binh An Nguyen & Virender Singh & Shumaila Afrin & Anna Yakubovska & Lanie Wang & Yasmin Ahmed & Rose Pedretti & Maria del Carmen Fernandez-Ramirez & Preeti Singh & Maja Pękała & Luis O. Cabrera Herna, 2024. "Structural polymorphism of amyloid fibrils in ATTR amyloidosis revealed by cryo-electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Pijush Chakraborty & Gwladys Rivière & Alina Hebestreit & Alain Ibáñez Opakua & Ina M. Vorberg & Loren B. Andreas & Markus Zweckstetter, 2023. "Acetylation discriminates disease-specific tau deposition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Dailu Chen & Sofia Bali & Ruhar Singh & Aleksandra Wosztyl & Vishruth Mullapudi & Jaime Vaquer-Alicea & Parvathy Jayan & Shamiram Melhem & Harro Seelaar & John C. Swieten & Marc I. Diamond & Lukasz A., 2023. "FTD-tau S320F mutation stabilizes local structure and allosterically promotes amyloid motif-dependent aggregation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Youqi Tao & Yunpeng Sun & Shiran Lv & Wencheng Xia & Kun Zhao & Qianhui Xu & Qinyue Zhao & Lin He & Weidong Le & Yong Wang & Cong Liu & Dan Li, 2022. "Heparin induces α-synuclein to form new fibril polymorphs with attenuated neuropathology," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45851-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.