IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54771-4.html
   My bibliography  Save this article

Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning

Author

Listed:
  • Zhaoxiang Cai

    (The University of Sydney)

  • Sofia Apolinário

    (INESC-ID
    Universidade de Lisboa)

  • Ana R. Baião

    (INESC-ID
    Universidade de Lisboa)

  • Clare Pacini

    (Wellcome Genome Campus)

  • Miguel D. Sousa

    (INESC-ID
    Universidade de Lisboa)

  • Susana Vinga

    (INESC-ID
    Universidade de Lisboa)

  • Roger R. Reddel

    (The University of Sydney)

  • Phillip J. Robinson

    (The University of Sydney)

  • Mathew J. Garnett

    (Wellcome Genome Campus)

  • Qing Zhong

    (The University of Sydney)

  • Emanuel Gonçalves

    (INESC-ID
    Universidade de Lisboa)

Abstract

Integrating diverse types of biological data is essential for a holistic understanding of cancer biology, yet it remains challenging due to data heterogeneity, complexity, and sparsity. Addressing this, our study introduces an unsupervised deep learning model, MOSA (Multi-Omic Synthetic Augmentation), specifically designed to integrate and augment the Cancer Dependency Map (DepMap). Harnessing orthogonal multi-omic information, this model successfully generates molecular and phenotypic profiles, resulting in an increase of 32.7% in the number of multi-omic profiles and thereby generating a complete DepMap for 1523 cancer cell lines. The synthetically enhanced data increases statistical power, uncovering less studied mechanisms associated with drug resistance, and refines the identification of genetic associations and clustering of cancer cell lines. By applying SHapley Additive exPlanations (SHAP) for model interpretation, MOSA reveals multi-omic features essential for cell clustering and biomarker identification related to drug and gene dependencies. This understanding is crucial for developing much-needed effective strategies to prioritize cancer targets.

Suggested Citation

  • Zhaoxiang Cai & Sofia Apolinário & Ana R. Baião & Clare Pacini & Miguel D. Sousa & Susana Vinga & Roger R. Reddel & Phillip J. Robinson & Mathew J. Garnett & Qing Zhong & Emanuel Gonçalves, 2024. "Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54771-4
    DOI: 10.1038/s41467-024-54771-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54771-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54771-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jesse S. Boehm & Mathew J. Garnett & David J. Adams & Hayley E. Francies & Todd R. Golub & William C. Hahn & Francesco Iorio & James M. McFarland & Leopold Parts & Francisca Vazquez, 2021. "Cancer research needs a better map," Nature, Nature, vol. 589(7843), pages 514-516, January.
    2. Jordi Barretina & Giordano Caponigro & Nicolas Stransky & Kavitha Venkatesan & Adam A. Margolin & Sungjoon Kim & Christopher J.Wilson & Joseph Lehár & Gregory V. Kryukov & Dmitriy Sonkin & Anupama Red, 2012. "Addendum: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity," Nature, Nature, vol. 492(7428), pages 290-290, December.
    3. Rebecca C. Poulos & Peter G. Hains & Rohan Shah & Natasha Lucas & Dylan Xavier & Srikanth S. Manda & Asim Anees & Jennifer M. S. Koh & Sadia Mahboob & Max Wittman & Steven G. Williams & Erin K. Sykes , 2020. "Strategies to enable large-scale proteomics for reproducible research," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Gabriele Picco & Elisabeth D. Chen & Luz Garcia Alonso & Fiona M. Behan & Emanuel Gonçalves & Graham Bignell & Angela Matchan & Beiyuan Fu & Ruby Banerjee & Elizabeth Anderson & Adam Butler & Cyril H., 2019. "Functional linkage of gene fusions to cancer cell fitness assessed by pharmacological and CRISPR-Cas9 screening," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    5. Yaara Oren & Michael Tsabar & Michael S. Cuoco & Liat Amir-Zilberstein & Heidie F. Cabanos & Jan-Christian Hütter & Bomiao Hu & Pratiksha I. Thakore & Marcin Tabaka & Charles P. Fulco & William Colgan, 2021. "Cycling cancer persister cells arise from lineages with distinct programs," Nature, Nature, vol. 596(7873), pages 576-582, August.
    6. Jordi Barretina & Giordano Caponigro & Nicolas Stransky & Kavitha Venkatesan & Adam A. Margolin & Sungjoon Kim & Christopher J. Wilson & Joseph Lehár & Gregory V. Kryukov & Dmitriy Sonkin & Anupama Re, 2012. "The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity," Nature, Nature, vol. 483(7391), pages 603-607, March.
    7. Joshua M. Dempster & Clare Pacini & Sasha Pantel & Fiona M. Behan & Thomas Green & John Krill-Burger & Charlotte M. Beaver & Scott T. Younger & Victor Zhivich & Hanna Najgebauer & Felicity Allen & Ema, 2019. "Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    8. Fiona M. Behan & Francesco Iorio & Gabriele Picco & Emanuel Gonçalves & Charlotte M. Beaver & Giorgia Migliardi & Rita Santos & Yanhua Rao & Francesco Sassi & Marika Pinnelli & Rizwan Ansari & Sarah H, 2019. "Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens," Nature, Nature, vol. 568(7753), pages 511-516, April.
    9. Clare Pacini & Joshua M. Dempster & Isabella Boyle & Emanuel Gonçalves & Hanna Najgebauer & Emre Karakoc & Dieudonne Meer & Andrew Barthorpe & Howard Lightfoot & Patricia Jaaks & James M. McFarland & , 2021. "Integrated cross-study datasets of genetic dependencies in cancer," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    10. Mathew J. Garnett & Elena J. Edelman & Sonja J. Heidorn & Chris D. Greenman & Anahita Dastur & King Wai Lau & Patricia Greninger & I. Richard Thompson & Xi Luo & Jorge Soares & Qingsong Liu & Francesc, 2012. "Systematic identification of genomic markers of drug sensitivity in cancer cells," Nature, Nature, vol. 483(7391), pages 570-575, March.
    11. Florian Rohart & Benoît Gautier & Amrit Singh & Kim-Anh Lê Cao, 2017. "mixOmics: An R package for ‘omics feature selection and multiple data integration," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-19, November.
    12. Gökcen Eraslan & Lukas M. Simon & Maria Mircea & Nikola S. Mueller & Fabian J. Theis, 2019. "Single-cell RNA-seq denoising using a deep count autoencoder," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    13. Guido Zampieri & Supreeta Vijayakumar & Elisabeth Yaneske & Claudio Angione, 2019. "Machine and deep learning meet genome-scale metabolic modeling," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nishanth Ulhas Nair & Patricia Greninger & Xiaohu Zhang & Adam A. Friedman & Arnaud Amzallag & Eliane Cortez & Avinash Das Sahu & Joo Sang Lee & Anahita Dastur & Regina K. Egan & Ellen Murchie & Miche, 2023. "A landscape of response to drug combinations in non-small cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Min Pan & William C. Wright & Richard H. Chapple & Asif Zubair & Manbir Sandhu & Jake E. Batchelder & Brandt C. Huddle & Jonathan Low & Kaley B. Blankenship & Yingzhe Wang & Brittney Gordon & Payton A, 2021. "The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    3. Hyeong-Min Lee & William C. Wright & Min Pan & Jonathan Low & Duane Currier & Jie Fang & Shivendra Singh & Stephanie Nance & Ian Delahunty & Yuna Kim & Richard H. Chapple & Yinwen Zhang & Xueying Liu , 2023. "A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Jurica Levatić & Marina Salvadores & Francisco Fuster-Tormo & Fran Supek, 2022. "Mutational signatures are markers of drug sensitivity of cancer cells," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Han Jin & Cheng Zhang & Martin Zwahlen & Kalle Feilitzen & Max Karlsson & Mengnan Shi & Meng Yuan & Xiya Song & Xiangyu Li & Hong Yang & Hasan Turkez & Linn Fagerberg & Mathias Uhlén & Adil Mardinoglu, 2023. "Systematic transcriptional analysis of human cell lines for gene expression landscape and tumor representation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Nicolae Sapoval & Amirali Aghazadeh & Michael G. Nute & Dinler A. Antunes & Advait Balaji & Richard Baraniuk & C. J. Barberan & Ruth Dannenfelser & Chen Dun & Mohammadamin Edrisi & R. A. Leo Elworth &, 2022. "Current progress and open challenges for applying deep learning across the biosciences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. G. Gambardella & G. Viscido & B. Tumaini & A. Isacchi & R. Bosotti & D. di Bernardo, 2022. "A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Shi, Chengchun & Xu, Tianlin & Bergsma, Wicher & Li, Lexin, 2021. "Double generative adversarial networks for conditional independence testing," LSE Research Online Documents on Economics 112550, London School of Economics and Political Science, LSE Library.
    9. Sandor Spisak & David Chen & Pornlada Likasitwatanakul & Paul Doan & Zhixin Li & Pratyusha Bala & Laura Vizkeleti & Viktoria Tisza & Pushpamali Silva & Marios Giannakis & Brian Wolpin & Jun Qi & Nilay, 2024. "Identifying regulators of aberrant stem cell and differentiation activity in colorectal cancer using a dual endogenous reporter system," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Cemal Erdem & Sean M. Gross & Laura M. Heiser & Marc R. Birtwistle, 2023. "MOBILE pipeline enables identification of context-specific networks and regulatory mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Sanju Sinha & Karina Barbosa & Kuoyuan Cheng & Mark D. M. Leiserson & Prashant Jain & Anagha Deshpande & David M. Wilson & Bríd M. Ryan & Ji Luo & Ze’ev A. Ronai & Joo Sang Lee & Aniruddha J. Deshpand, 2021. "A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    12. Ruitong Li & Olaf Klingbeil & Davide Monducci & Michael J. Young & Diego J. Rodriguez & Zaid Bayyat & Joshua M. Dempster & Devishi Kesar & Xiaoping Yang & Mahdi Zamanighomi & Christopher R. Vakoc & Ta, 2022. "Comparative optimization of combinatorial CRISPR screens," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. George Rosenberger & Wenxue Li & Mikko Turunen & Jing He & Prem S. Subramaniam & Sergey Pampou & Aaron T. Griffin & Charles Karan & Patrick Kerwin & Diana Murray & Barry Honig & Yansheng Liu & Andrea , 2024. "Network-based elucidation of colon cancer drug resistance mechanisms by phosphoproteomic time-series analysis," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    14. Sean A. Misek & Aaron Fultineer & Jeremie Kalfon & Javad Noorbakhsh & Isabella Boyle & Priyanka Roy & Joshua Dempster & Lia Petronio & Katherine Huang & Alham Saadat & Thomas Green & Adam Brown & John, 2024. "Germline variation contributes to false negatives in CRISPR-based experiments with varying burden across ancestries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Junyi Chen & Xiaoying Wang & Anjun Ma & Qi-En Wang & Bingqiang Liu & Lang Li & Dong Xu & Qin Ma, 2022. "Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Omar Alhalabi & Jianfeng Chen & Yuxue Zhang & Yang Lu & Qi Wang & Sumankalai Ramachandran & Rebecca Slack Tidwell & Guangchun Han & Xinmiao Yan & Jieru Meng & Ruiping Wang & Anh G. Hoang & Wei-Lien Wa, 2022. "MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Yan Li & Chen Xu & Bing Wang & Fujiang Xu & Fahan Ma & Yuanyuan Qu & Dongxian Jiang & Kai Li & Jinwen Feng & Sha Tian & Xiaohui Wu & Yunzhi Wang & Yang Liu & Zhaoyu Qin & Yalan Liu & Jing Qin & Qi Son, 2022. "Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals potential therapeutic strategies," Nature Communications, Nature, vol. 13(1), pages 1-26, December.
    18. Aina Maria Mas & Enrique Goñi & Igor Ruiz de los Mozos & Aida Arcas & Luisa Statello & Jovanna González & Lorea Blázquez & Wei Ting Chelsea Lee & Dipika Gupta & Álvaro Sejas & Shoko Hoshina & Alexandr, 2023. "ORC1 binds to cis-transcribed RNAs for efficient activation of replication origins," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    19. Seungyeul Yoo & Abhilasha Sinha & Dawei Yang & Nasser K. Altorki & Radhika Tandon & Wenhui Wang & Deebly Chavez & Eunjee Lee & Ayushi S. Patel & Takashi Sato & Ranran Kong & Bisen Ding & Eric E. Schad, 2022. "Integrative network analysis of early-stage lung adenocarcinoma identifies aurora kinase inhibition as interceptor of invasion and progression," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    20. Alon Stern & Mariam Fokra & Boris Sarvin & Ahmad Abed Alrahem & Won Dong Lee & Elina Aizenshtein & Nikita Sarvin & Tomer Shlomi, 2023. "Inferring mitochondrial and cytosolic metabolism by coupling isotope tracing and deconvolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54771-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.