IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52050-w.html
   My bibliography  Save this article

Transverse recoil imprinted on free-electron radiation

Author

Listed:
  • Xihang Shi

    (Technion – Israel Institute of Technology)

  • Lee Wei Wesley Wong

    (Nanyang Technological University)

  • Sunchao Huang

    (Nanyang Technological University)

  • Liang Jie Wong

    (Nanyang Technological University)

  • Ido Kaminer

    (Technion – Israel Institute of Technology)

Abstract

Phenomena of free-electron X-ray radiation are treated almost exclusively with classical electrodynamics, despite the intrinsic interaction being that of quantum electrodynamics. The lack of quantumness arises from the vast disparity between the electron energy and the much smaller photon energy, resulting in a small cross-section that makes quantum effects negligible. Here we identify a fundamentally distinct phenomenon of electron radiation that bypasses this energy disparity, and thus displays extremely strong quantum features. This phenomenon arises when free-electron transverse scattering occurs during the radiation process, creating entanglement between each transversely recoiled electron and the photons it emitted. This phenomenon profoundly modifies the characteristics of free-electron radiation mediated by crystals, compared to conventional classical analysis and even previous quantum analysis. We also analyze conditions to detect this phenomenon using low-emittance electron beams and high-resolution X-ray spectrometers. These quantum radiation features could guide the development of compact coherent X-ray sources facilitated by nanophotonics and quantum optics.

Suggested Citation

  • Xihang Shi & Lee Wei Wesley Wong & Sunchao Huang & Liang Jie Wong & Ido Kaminer, 2024. "Transverse recoil imprinted on free-electron radiation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52050-w
    DOI: 10.1038/s41467-024-52050-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52050-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52050-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles Roques-Carmes & Steven E. Kooi & Yi Yang & Aviram Massuda & Phillip D. Keathley & Aun Zaidi & Yujia Yang & John D. Joannopoulos & Karl K. Berggren & Ido Kaminer & Marin Soljačić, 2019. "Towards integrated tunable all-silicon free-electron light sources," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Claire Donnelly & Manuel Guizar-Sicairos & Valerio Scagnoli & Sebastian Gliga & Mirko Holler & Jörg Raabe & Laura J. Heyderman, 2017. "Three-dimensional magnetization structures revealed with X-ray vector nanotomography," Nature, Nature, vol. 547(7663), pages 328-331, July.
    3. Giulio Guzzinati & Armand Béché & Hugo Lourenço-Martins & Jérôme Martin & Mathieu Kociak & Jo Verbeeck, 2017. "Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    4. Armin Feist & Katharina E. Echternkamp & Jakob Schauss & Sergey V. Yalunin & Sascha Schäfer & Claus Ropers, 2015. "Quantum coherent optical phase modulation in an ultrafast transmission electron microscope," Nature, Nature, vol. 521(7551), pages 200-203, May.
    5. E. A. Peralta & K. Soong & R. J. England & E. R. Colby & Z. Wu & B. Montazeri & C. McGuinness & J. McNeur & K. J. Leedle & D. Walz & E. B. Sozer & B. Cowan & B. Schwartz & G. Travish & R. L. Byer, 2013. "Demonstration of electron acceleration in a laser-driven dielectric microstructure," Nature, Nature, vol. 503(7474), pages 91-94, November.
    6. Daniel L. Freimund & Kayvan Aflatooni & Herman Batelaan, 2001. "Observation of the Kapitza–Dirac effect," Nature, Nature, vol. 413(6852), pages 142-143, September.
    7. Liang Jie Wong & Nicholas Rivera & Chitraang Murdia & Thomas Christensen & John D. Joannopoulos & Marin Soljačić & Ido Kaminer, 2021. "Control of quantum electrodynamical processes by shaping electron wavepackets," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tal Fishman & Urs Haeusler & Raphael Dahan & Michael Yannai & Yuval Adiv & Tom Lenkiewicz Abudi & Roy Shiloh & Ori Eyal & Peyman Yousefi & Gadi Eisenstein & Peter Hommelhoff & Ido Kaminer, 2023. "Imaging the field inside nanophotonic accelerators," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. John H. Gaida & Hugo Lourenço-Martins & Sergey V. Yalunin & Armin Feist & Murat Sivis & Thorsten Hohage & F. Javier García de Abajo & Claus Ropers, 2023. "Lorentz microscopy of optical fields," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Troy Dion & Kilian D. Stenning & Alex Vanstone & Holly H. Holder & Rawnak Sultana & Ghanem Alatteili & Victoria Martinez & Mojtaba Taghipour Kaffash & Takashi Kimura & Rupert F. Oulton & Will R. Branf, 2024. "Ultrastrong magnon-magnon coupling and chiral spin-texture control in a dipolar 3D multilayered artificial spin-vortex ice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    5. Li, Yong & Yang, Jie & Song, Jian, 2017. "Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 160-172.
    6. Li, Yong & Yang, Jie & Song, Jian, 2016. "Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 685-697.
    7. Li, Yong & Yang, Jie & Song, Jian, 2015. "Microscale characterization of coupled degradation mechanism of graded materials in lithium batteries of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1445-1461.
    8. Yves Auad & Eduardo J. C. Dias & Marcel Tencé & Jean-Denis Blazit & Xiaoyan Li & Luiz Fernando Zagonel & Odile Stéphan & Luiz H. G. Tizei & F. Javier García de Abajo & Mathieu Kociak, 2023. "μeV electron spectromicroscopy using free-space light," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    9. Li, Yong & Yang, Jie & Song, Jian, 2017. "Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 652-663.
    10. Dingguo Zheng & Siyuan Huang & Jun Li & Yuan Tian & Yongzhao Zhang & Zhongwen Li & Huanfang Tian & Huaixin Yang & Jianqi Li, 2023. "Efficiently accelerated free electrons by metallic laser accelerator," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Yu-Jia Wang & Yan-Peng Feng & Yun-Long Tang & Yin-Lian Zhu & Yi Cao & Min-Jie Zou & Wan-Rong Geng & Xiu-Liang Ma, 2024. "Polar Bloch points in strained ferroelectric films," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Matthieu Grelier & Florian Godel & Aymeric Vecchiola & Sophie Collin & Karim Bouzehouane & Albert Fert & Vincent Cros & Nicolas Reyren, 2022. "Three-dimensional skyrmionic cocoons in magnetic multilayers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Sergey Zayko & Ofer Kfir & Michael Heigl & Michael Lohmann & Murat Sivis & Manfred Albrecht & Claus Ropers, 2021. "Ultrafast high-harmonic nanoscopy of magnetization dynamics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Haokun Luo & Yunxuan Wei & Georgios G. Pyrialakos & Mercedeh Khajavikhan & Demetrios N. Christodoulides, 2024. "Guiding charged particles in vacuum via Lagrange points," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Zheng Li & Jin Xue & Marc Cea & Jaehwan Kim & Hao Nong & Daniel Chong & Khee Yong Lim & Elgin Quek & Rajeev J. Ram, 2023. "A sub-wavelength Si LED integrated in a CMOS platform," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Valerio Di Giulio & F. Javier García de Abajo, 2023. "Nanophotonics for pair production," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52050-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.