IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52020-2.html
   My bibliography  Save this article

Deep generative models of protein structure uncover distant relationships across a continuous fold space

Author

Listed:
  • Eli J. Draizen

    (University of Virginia
    University of Virginia)

  • Stella Veretnik

    (University of Virginia)

  • Cameron Mura

    (University of Virginia
    University of Virginia)

  • Philip E. Bourne

    (University of Virginia
    University of Virginia)

Abstract

Our views of fold space implicitly rest upon many assumptions that impact how we analyze, interpret and understand protein structure, function and evolution. For instance, is there an optimal granularity in viewing protein structural similarities (e.g., architecture, topology or some other level)? Similarly, the discrete/continuous dichotomy of fold space is central, but remains unresolved. Discrete views of fold space bin similar folds into distinct, non-overlapping groups; unfortunately, such binning can miss remote relationships. While hierarchical systems like CATH are indispensable resources, less heuristic and more conceptually flexible approaches could enable more nuanced explorations of fold space. Building upon an Urfold model of protein structure, here we present a deep generative modeling framework, termed DeepUrfold, for analyzing protein relationships at scale. DeepUrfold’s learned embeddings occupy high-dimensional latent spaces that can be distilled for a given protein in terms of an amalgamated representation uniting sequence, structure and biophysical properties. This approach is structure-guided, versus being purely structure-based, and DeepUrfold learns representations that, in a sense, define superfamilies. Deploying DeepUrfold with CATH reveals evolutionarily-remote relationships that evade existing methodologies, and suggests a mostly-continuous view of fold space—a view that extends beyond simple geometric similarity, towards the realm of integrated sequence ↔ structure ↔ function properties.

Suggested Citation

  • Eli J. Draizen & Stella Veretnik & Cameron Mura & Philip E. Bourne, 2024. "Deep generative models of protein structure uncover distant relationships across a continuous fold space," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52020-2
    DOI: 10.1038/s41467-024-52020-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52020-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52020-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jung-Eun Shin & Adam J. Riesselman & Aaron W. Kollasch & Conor McMahon & Elana Simon & Chris Sander & Aashish Manglik & Andrew C. Kruse & Debora S. Marks, 2021. "Protein design and variant prediction using autoregressive generative models," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatma-Elzahraa Eid & Albert T. Chen & Ken Y. Chan & Qin Huang & Qingxia Zheng & Isabelle G. Tobey & Simon Pacouret & Pamela P. Brauer & Casey Keyes & Megan Powell & Jencilin Johnston & Binhui Zhao & K, 2024. "Systematic multi-trait AAV capsid engineering for efficient gene delivery," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Karol Buda & Charlotte M. Miton & Nobuhiko Tokuriki, 2023. "Pervasive epistasis exposes intramolecular networks in adaptive enzyme evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Mireia Seuma & Ben Lehner & Benedetta Bolognesi, 2022. "An atlas of amyloid aggregation: the impact of substitutions, insertions, deletions and truncations on amyloid beta fibril nucleation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Nicki Skafte Detlefsen & Søren Hauberg & Wouter Boomsma, 2022. "Learning meaningful representations of protein sequences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Kevin E. Wu & Kevin K. Yang & Rianne Berg & Sarah Alamdari & James Y. Zou & Alex X. Lu & Ava P. Amini, 2024. "Protein structure generation via folding diffusion," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Emily K. Makowski & Patrick C. Kinnunen & Jie Huang & Lina Wu & Matthew D. Smith & Tiexin Wang & Alec A. Desai & Craig N. Streu & Yulei Zhang & Jennifer M. Zupancic & John S. Schardt & Jennifer J. Lin, 2022. "Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Haohuai He & Bing He & Lei Guan & Yu Zhao & Feng Jiang & Guanxing Chen & Qingge Zhu & Calvin Yu-Chian Chen & Ting Li & Jianhua Yao, 2024. "De novo generation of SARS-CoV-2 antibody CDRH3 with a pre-trained generative large language model," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Jeffrey A. Ruffolo & Lee-Shin Chu & Sai Pooja Mahajan & Jeffrey J. Gray, 2023. "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Lin Li & Esther Gupta & John Spaeth & Leslie Shing & Rafael Jaimes & Emily Engelhart & Randolph Lopez & Rajmonda S. Caceres & Tristan Bepler & Matthew E. Walsh, 2023. "Machine learning optimization of candidate antibody yields highly diverse sub-nanomolar affinity antibody libraries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Erika Erickson & Japheth E. Gado & Luisana Avilán & Felicia Bratti & Richard K. Brizendine & Paul A. Cox & Raj Gill & Rosie Graham & Dong-Jin Kim & Gerhard König & William E. Michener & Saroj Poudel &, 2022. "Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Jonathan Parkinson & Ryan Hard & Wei Wang, 2023. "The RESP AI model accelerates the identification of tight-binding antibodies," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Evgenii Lobzaev & Michael A. Herrera & Martyna Kasprzyk & Giovanni Stracquadanio, 2024. "Protein engineering using variational free energy approximation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Ying Tang & Jing Liu & Jiang Zhang & Pan Zhang, 2024. "Learning nonequilibrium statistical mechanics and dynamical phase transitions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Evgenii Lobzaev & Giovanni Stracquadanio, 2024. "Dirichlet latent modelling enables effective learning and sampling of the functional protein design space," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52020-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.