IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45172-8.html
   My bibliography  Save this article

Learning nonequilibrium statistical mechanics and dynamical phase transitions

Author

Listed:
  • Ying Tang

    (University of Electronic Sciences and Technology of China
    Beijing Normal University)

  • Jing Liu

    (Chinese Academy of Sciences
    Beijing Normal University)

  • Jiang Zhang

    (Beijing Normal University
    Swarma Research)

  • Pan Zhang

    (Chinese Academy of Sciences
    Hangzhou Institute for Advanced Study, UCAS
    Hefei National Laboratory)

Abstract

Nonequilibrium statistical mechanics exhibit a variety of complex phenomena far from equilibrium. It inherits challenges of equilibrium, including accurately describing the joint distribution of a large number of configurations, and also poses new challenges as the distribution evolves over time. Characterizing dynamical phase transitions as an emergent behavior further requires tracking nonequilibrium systems under a control parameter. While a number of methods have been proposed, such as tensor networks for one-dimensional lattices, we lack a method for arbitrary time beyond the steady state and for higher dimensions. Here, we develop a general computational framework to study the time evolution of nonequilibrium systems in statistical mechanics by leveraging variational autoregressive networks, which offer an efficient computation on the dynamical partition function, a central quantity for discovering the phase transition. We apply the approach to prototype models of nonequilibrium statistical mechanics, including the kinetically constrained models of structural glasses up to three dimensions. The approach uncovers the active-inactive phase transition of spin flips, the dynamical phase diagram, as well as new scaling relations. The result highlights the potential of machine learning dynamical phase transitions in nonequilibrium systems.

Suggested Citation

  • Ying Tang & Jing Liu & Jiang Zhang & Pan Zhang, 2024. "Learning nonequilibrium statistical mechanics and dynamical phase transitions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45172-8
    DOI: 10.1038/s41467-024-45172-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45172-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45172-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jung-Eun Shin & Adam J. Riesselman & Aaron W. Kollasch & Conor McMahon & Elana Simon & Chris Sander & Aashish Manglik & Andrew C. Kruse & Debora S. Marks, 2021. "Protein design and variant prediction using autoregressive generative models," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Tom Westerhout & Nikita Astrakhantsev & Konstantin S. Tikhonov & Mikhail I. Katsnelson & Andrey A. Bagrov, 2020. "Generalization properties of neural network approximations to frustrated magnet ground states," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mireia Seuma & Ben Lehner & Benedetta Bolognesi, 2022. "An atlas of amyloid aggregation: the impact of substitutions, insertions, deletions and truncations on amyloid beta fibril nucleation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Kevin E. Wu & Kevin K. Yang & Rianne Berg & Sarah Alamdari & James Y. Zou & Alex X. Lu & Ava P. Amini, 2024. "Protein structure generation via folding diffusion," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Jeffrey A. Ruffolo & Lee-Shin Chu & Sai Pooja Mahajan & Jeffrey J. Gray, 2023. "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Lin Li & Esther Gupta & John Spaeth & Leslie Shing & Rafael Jaimes & Emily Engelhart & Randolph Lopez & Rajmonda S. Caceres & Tristan Bepler & Matthew E. Walsh, 2023. "Machine learning optimization of candidate antibody yields highly diverse sub-nanomolar affinity antibody libraries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Karol Buda & Charlotte M. Miton & Nobuhiko Tokuriki, 2023. "Pervasive epistasis exposes intramolecular networks in adaptive enzyme evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Nicki Skafte Detlefsen & Søren Hauberg & Wouter Boomsma, 2022. "Learning meaningful representations of protein sequences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Emily K. Makowski & Patrick C. Kinnunen & Jie Huang & Lina Wu & Matthew D. Smith & Tiexin Wang & Alec A. Desai & Craig N. Streu & Yulei Zhang & Jennifer M. Zupancic & John S. Schardt & Jennifer J. Lin, 2022. "Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Erika Erickson & Japheth E. Gado & Luisana Avilán & Felicia Bratti & Richard K. Brizendine & Paul A. Cox & Raj Gill & Rosie Graham & Dong-Jin Kim & Gerhard König & William E. Michener & Saroj Poudel &, 2022. "Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Jonathan Parkinson & Ryan Hard & Wei Wang, 2023. "The RESP AI model accelerates the identification of tight-binding antibodies," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45172-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.