IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45051-2.html
   My bibliography  Save this article

Protein structure generation via folding diffusion

Author

Listed:
  • Kevin E. Wu

    (Stanford University
    Stanford University
    Stanford University School of Medicine)

  • Kevin K. Yang

    (Microsoft Research)

  • Rianne Berg

    (Microsoft Research)

  • Sarah Alamdari

    (Microsoft Research)

  • James Y. Zou

    (Stanford University
    Stanford University School of Medicine)

  • Alex X. Lu

    (Microsoft Research)

  • Ava P. Amini

    (Microsoft Research)

Abstract

The ability to computationally generate novel yet physically foldable protein structures could lead to new biological discoveries and new treatments targeting yet incurable diseases. Despite recent advances in protein structure prediction, directly generating diverse, novel protein structures from neural networks remains difficult. In this work, we present a diffusion-based generative model that generates protein backbone structures via a procedure inspired by the natural folding process. We describe a protein backbone structure as a sequence of angles capturing the relative orientation of the constituent backbone atoms, and generate structures by denoising from a random, unfolded state towards a stable folded structure. Not only does this mirror how proteins natively twist into energetically favorable conformations, the inherent shift and rotational invariance of this representation crucially alleviates the need for more complex equivariant networks. We train a denoising diffusion probabilistic model with a simple transformer backbone and demonstrate that our resulting model unconditionally generates highly realistic protein structures with complexity and structural patterns akin to those of naturally-occurring proteins. As a useful resource, we release an open-source codebase and trained models for protein structure diffusion.

Suggested Citation

  • Kevin E. Wu & Kevin K. Yang & Rianne Berg & Sarah Alamdari & James Y. Zou & Alex X. Lu & Ava P. Amini, 2024. "Protein structure generation via folding diffusion," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45051-2
    DOI: 10.1038/s41467-024-45051-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45051-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45051-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Jeanne Trinquier & Guido Uguzzoni & Andrea Pagnani & Francesco Zamponi & Martin Weigt, 2021. "Efficient generative modeling of protein sequences using simple autoregressive models," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Noelia Ferruz & Steffen Schmidt & Birte Höcker, 2022. "ProtGPT2 is a deep unsupervised language model for protein design," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    5. Jung-Eun Shin & Adam J. Riesselman & Aaron W. Kollasch & Conor McMahon & Elana Simon & Chris Sander & Aashish Manglik & Andrew C. Kruse & Debora S. Marks, 2021. "Protein design and variant prediction using autoregressive generative models," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Orlando & Daniele Raimondi & Ramon Duran-Romaña & Yves Moreau & Joost Schymkowitz & Frederic Rousseau, 2022. "PyUUL provides an interface between biological structures and deep learning algorithms," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Josie L. Ferreira & Vojtěch Pražák & Daven Vasishtan & Marc Siggel & Franziska Hentzschel & Annika M. Binder & Emma Pietsch & Jan Kosinski & Friedrich Frischknecht & Tim W. Gilberger & Kay Grünewald, 2023. "Variable microtubule architecture in the malaria parasite," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Arnau Comajuncosa-Creus & Guillem Jorba & Xavier Barril & Patrick Aloy, 2024. "Comprehensive detection and characterization of human druggable pockets through binding site descriptors," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Jeffrey A. Ruffolo & Lee-Shin Chu & Sai Pooja Mahajan & Jeffrey J. Gray, 2023. "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Friederike M. C. Benning & Simon Jenni & Coby Y. Garcia & Tran H. Nguyen & Xuewu Zhang & Luke H. Chao, 2024. "Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid assembly," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Kiran Krishnamachari & Dylan Lu & Alexander Swift-Scott & Anuar Yeraliyev & Kayla Lee & Weitai Huang & Sim Ngak Leng & Anders Jacobsen Skanderup, 2022. "Accurate somatic variant detection using weakly supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Akshay J. Maheshwari & Jonathan Calles & Sean K. Waterton & Drew Endy, 2023. "Engineering tRNA abundances for synthetic cellular systems," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Berke Türkaydin & Marcus Schewe & Elena Barbara Riel & Friederike Schulz & Johann Biedermann & Thomas Baukrowitz & Han Sun, 2024. "Atomistic mechanism of coupling between cytosolic sensor domain and selectivity filter in TREK K2P channels," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Haohuai He & Bing He & Lei Guan & Yu Zhao & Feng Jiang & Guanxing Chen & Qingge Zhu & Calvin Yu-Chian Chen & Ting Li & Jianhua Yao, 2024. "De novo generation of SARS-CoV-2 antibody CDRH3 with a pre-trained generative large language model," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Erika Erickson & Japheth E. Gado & Luisana Avilán & Felicia Bratti & Richard K. Brizendine & Paul A. Cox & Raj Gill & Rosie Graham & Dong-Jin Kim & Gerhard König & William E. Michener & Saroj Poudel &, 2022. "Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. David Ding & Ada Y. Shaw & Sam Sinai & Nathan Rollins & Noam Prywes & David F. Savage & Michael T. Laub & Debora S. Marks, 2024. "Protein design using structure-based residue preferences," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Maximilian Seidel & Natalie Romanov & Agnieszka Obarska-Kosinska & Anja Becker & Nayara Trevisan Doimo de Azevedo & Jan Provaznik & Sankarshana R. Nagaraja & Jonathan J. M. Landry & Vladimir Benes & M, 2023. "Co-translational binding of importins to nascent proteins," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Verena Rukes & Mathieu E. Rebeaud & Louis W. Perrin & Paolo De Los Rios & Chan Cao, 2024. "Single-molecule evidence of Entropic Pulling by Hsp70 chaperones," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    15. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Efren Garcia-Maldonado & Andrew D. Huber & Sergio C. Chai & Stanley Nithianantham & Yongtao Li & Jing Wu & Shyaron Poudel & Darcie J. Miller & Jayaraman Seetharaman & Taosheng Chen, 2024. "Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45051-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.