IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31457-3.html
   My bibliography  Save this article

Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space

Author

Listed:
  • Emily K. Makowski

    (University of Michigan
    University of Michigan)

  • Patrick C. Kinnunen

    (University of Michigan)

  • Jie Huang

    (University of Michigan
    University of Michigan)

  • Lina Wu

    (University of Michigan
    University of Michigan)

  • Matthew D. Smith

    (University of Michigan
    University of Michigan)

  • Tiexin Wang

    (University of Michigan
    University of Michigan)

  • Alec A. Desai

    (University of Michigan
    University of Michigan)

  • Craig N. Streu

    (University of Michigan
    University of Michigan
    Albion College)

  • Yulei Zhang

    (University of Michigan
    University of Michigan)

  • Jennifer M. Zupancic

    (University of Michigan
    University of Michigan)

  • John S. Schardt

    (University of Michigan
    University of Michigan
    University of Michigan)

  • Jennifer J. Linderman

    (University of Michigan
    University of Michigan)

  • Peter M. Tessier

    (University of Michigan
    University of Michigan
    University of Michigan
    University of Michigan)

Abstract

Therapeutic antibody development requires selection and engineering of molecules with high affinity and other drug-like biophysical properties. Co-optimization of multiple antibody properties remains a difficult and time-consuming process that impedes drug development. Here we evaluate the use of machine learning to simplify antibody co-optimization for a clinical-stage antibody (emibetuzumab) that displays high levels of both on-target (antigen) and off-target (non-specific) binding. We mutate sites in the antibody complementarity-determining regions, sort the antibody libraries for high and low levels of affinity and non-specific binding, and deep sequence the enriched libraries. Interestingly, machine learning models trained on datasets with binary labels enable predictions of continuous metrics that are strongly correlated with antibody affinity and non-specific binding. These models illustrate strong tradeoffs between these two properties, as increases in affinity along the co-optimal (Pareto) frontier require progressive reductions in specificity. Notably, models trained with deep learning features enable prediction of novel antibody mutations that co-optimize affinity and specificity beyond what is possible for the original antibody library. These findings demonstrate the power of machine learning models to greatly expand the exploration of novel antibody sequence space and accelerate the development of highly potent, drug-like antibodies.

Suggested Citation

  • Emily K. Makowski & Patrick C. Kinnunen & Jie Huang & Lina Wu & Matthew D. Smith & Tiexin Wang & Alec A. Desai & Craig N. Streu & Yulei Zhang & Jennifer M. Zupancic & John S. Schardt & Jennifer J. Lin, 2022. "Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31457-3
    DOI: 10.1038/s41467-022-31457-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31457-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31457-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Regina S Salvat & Andrew S Parker & Yoonjoo Choi & Chris Bailey-Kellogg & Karl E Griswold, 2015. "Mapping the Pareto Optimal Design Space for a Functionally Deimmunized Biotherapeutic Candidate," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-15, January.
    2. Richard N. McLaughlin Jr & Frank J. Poelwijk & Arjun Raman & Walraj S. Gosal & Rama Ranganathan, 2012. "The spatial architecture of protein function and adaptation," Nature, Nature, vol. 491(7422), pages 138-142, November.
    3. Jung-Eun Shin & Adam J. Riesselman & Aaron W. Kollasch & Conor McMahon & Elana Simon & Chris Sander & Aashish Manglik & Andrew C. Kruse & Debora S. Marks, 2021. "Protein design and variant prediction using autoregressive generative models," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Parkinson & Ryan Hard & Wei Wang, 2023. "The RESP AI model accelerates the identification of tight-binding antibodies," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatma-Elzahraa Eid & Albert T. Chen & Ken Y. Chan & Qin Huang & Qingxia Zheng & Isabelle G. Tobey & Simon Pacouret & Pamela P. Brauer & Casey Keyes & Megan Powell & Jencilin Johnston & Binhui Zhao & K, 2024. "Systematic multi-trait AAV capsid engineering for efficient gene delivery," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Alistair Bailey & Andy van Hateren & Tim Elliott & Jörn M Werner, 2014. "Two Polymorphisms Facilitate Differences in Plasticity between Two Chicken Major Histocompatibility Complex Class I Proteins," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
    3. Ahmed Abdul Quadeer & David Morales-Jimenez & Matthew R McKay, 2018. "Co-evolution networks of HIV/HCV are modular with direct association to structure and function," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-29, September.
    4. Karol Buda & Charlotte M. Miton & Nobuhiko Tokuriki, 2023. "Pervasive epistasis exposes intramolecular networks in adaptive enzyme evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Shou-Wen Wang & Anne-Florence Bitbol & Ned S Wingreen, 2019. "Revealing evolutionary constraints on proteins through sequence analysis," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-16, April.
    6. Khaled Daqrouq & Rami Alhmouz & Ahmed Balamesh & Adnan Memic, 2015. "Application of Wavelet Transform for PDZ Domain Classification," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-16, April.
    7. Mireia Seuma & Ben Lehner & Benedetta Bolognesi, 2022. "An atlas of amyloid aggregation: the impact of substitutions, insertions, deletions and truncations on amyloid beta fibril nucleation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Nicki Skafte Detlefsen & Søren Hauberg & Wouter Boomsma, 2022. "Learning meaningful representations of protein sequences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Kevin E. Wu & Kevin K. Yang & Rianne Berg & Sarah Alamdari & James Y. Zou & Alex X. Lu & Ava P. Amini, 2024. "Protein structure generation via folding diffusion," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Haohuai He & Bing He & Lei Guan & Yu Zhao & Feng Jiang & Guanxing Chen & Qingge Zhu & Calvin Yu-Chian Chen & Ting Li & Jianhua Yao, 2024. "De novo generation of SARS-CoV-2 antibody CDRH3 with a pre-trained generative large language model," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Jeffrey A. Ruffolo & Lee-Shin Chu & Sai Pooja Mahajan & Jeffrey J. Gray, 2023. "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Lin Li & Esther Gupta & John Spaeth & Leslie Shing & Rafael Jaimes & Emily Engelhart & Randolph Lopez & Rajmonda S. Caceres & Tristan Bepler & Matthew E. Walsh, 2023. "Machine learning optimization of candidate antibody yields highly diverse sub-nanomolar affinity antibody libraries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Erika Erickson & Japheth E. Gado & Luisana Avilán & Felicia Bratti & Richard K. Brizendine & Paul A. Cox & Raj Gill & Rosie Graham & Dong-Jin Kim & Gerhard König & William E. Michener & Saroj Poudel &, 2022. "Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Jonathan Parkinson & Ryan Hard & Wei Wang, 2023. "The RESP AI model accelerates the identification of tight-binding antibodies," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Bian Li & Dan M. Roden & John A. Capra, 2022. "The 3D mutational constraint on amino acid sites in the human proteome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Willow Coyote-Maestas & David Nedrud & Antonio Suma & Yungui He & Kenneth A. Matreyek & Douglas M. Fowler & Vincenzo Carnevale & Chad L. Myers & Daniel Schmidt, 2021. "Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    17. Ying Tang & Jing Liu & Jiang Zhang & Pan Zhang, 2024. "Learning nonequilibrium statistical mechanics and dynamical phase transitions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Tiberiu Teşileanu & Lucy J Colwell & Stanislas Leibler, 2015. "Protein Sectors: Statistical Coupling Analysis versus Conservation," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    19. Eli J. Draizen & Stella Veretnik & Cameron Mura & Philip E. Bourne, 2024. "Deep generative models of protein structure uncover distant relationships across a continuous fold space," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31457-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.