IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52007-z.html
   My bibliography  Save this article

Avoided metallicity in a hole-doped Mott insulator on a triangular lattice

Author

Listed:
  • Chi Ming Yim

    (University of St Andrews, North Haugh
    Shanghai Jiao Tong University)

  • Gesa-R. Siemann

    (University of St Andrews, North Haugh)

  • Srdjan Stavrić

    (Unitá di Ricerca presso Terzi c/o Universitá “G. D’Annunzio”
    University of Belgrade)

  • Seunghyun Khim

    (Nöthnitzer Straße 40)

  • Izidor Benedičič

    (University of St Andrews, North Haugh)

  • Philip A. E. Murgatroyd

    (University of St Andrews, North Haugh)

  • Tommaso Antonelli

    (University of St Andrews, North Haugh)

  • Matthew D. Watson

    (Harwell Science and Innovation Campus)

  • Andrew P. Mackenzie

    (University of St Andrews, North Haugh
    Nöthnitzer Straße 40)

  • Silvia Picozzi

    (Unitá di Ricerca presso Terzi c/o Universitá “G. D’Annunzio”)

  • Phil D. C. King

    (University of St Andrews, North Haugh)

  • Peter Wahl

    (University of St Andrews, North Haugh
    Universität Bonn)

Abstract

Doping of a Mott insulator gives rise to a wide variety of exotic emergent states, from high-temperature superconductivity to charge, spin, and orbital orders. The physics underpinning their evolution is, however, poorly understood. A major challenge is the chemical complexity associated with traditional routes to doping. Here, we study the Mott insulating CrO2 layer of the delafossite PdCrO2, where an intrinsic polar catastrophe provides a clean route to doping of the surface. From scanning tunnelling microscopy and angle-resolved photoemission, we find that the surface stays insulating accompanied by a short-range ordered state. From density functional theory, we demonstrate how the formation of charge disproportionation results in an insulating ground state of the surface that is disparate from the hidden Mott insulator in the bulk. We demonstrate that voltage pulses induce local modifications to this state which relax over tens of minutes, pointing to a glassy nature of the charge order.

Suggested Citation

  • Chi Ming Yim & Gesa-R. Siemann & Srdjan Stavrić & Seunghyun Khim & Izidor Benedičič & Philip A. E. Murgatroyd & Tommaso Antonelli & Matthew D. Watson & Andrew P. Mackenzie & Silvia Picozzi & Phil D. C, 2024. "Avoided metallicity in a hole-doped Mott insulator on a triangular lattice," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52007-z
    DOI: 10.1038/s41467-024-52007-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52007-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52007-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leon Balents, 2010. "Spin liquids in frustrated magnets," Nature, Nature, vol. 464(7286), pages 199-208, March.
    2. Veronika Sunko & H. Rosner & P. Kushwaha & S. Khim & F. Mazzola & L. Bawden & O. J. Clark & J. M. Riley & D. Kasinathan & M. W. Haverkort & T. K. Kim & M. Hoesch & J. Fujii & I. Vobornik & A. P. Macke, 2017. "Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking," Nature, Nature, vol. 549(7673), pages 492-496, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shingo Toyoda & Manfred Fiebig & Lea Forster & Taka-hisa Arima & Yoshinori Tokura & Naoki Ogawa, 2021. "Writing of strain-controlled multiferroic ribbons into MnWO4," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    2. Rafael González-Hernández & Philipp Ritzinger & Karel Výborný & Jakub Železný & Aurélien Manchon, 2024. "Non-relativistic torque and Edelstein effect in non-collinear magnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Bin Gao & Tong Chen & Xiao-Chuan Wu & Michael Flynn & Chunruo Duan & Lebing Chen & Chien-Lung Huang & Jesse Liebman & Shuyi Li & Feng Ye & Matthew B. Stone & Andrey Podlesnyak & Douglas L. Abernathy &, 2023. "Diffusive excitonic bands from frustrated triangular sublattice in a singlet-ground-state system," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Tao Hong & Tao Ying & Qing Huang & Sachith E. Dissanayake & Yiming Qiu & Mark M. Turnbull & Andrey A. Podlesnyak & Yan Wu & Huibo Cao & Yaohua Liu & Izuru Umehara & Jun Gouchi & Yoshiya Uwatoko & Masa, 2022. "Evidence for pressure induced unconventional quantum criticality in the coupled spin ladder antiferromagnet C9H18N2CuBr4," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Sara Varotto & Annika Johansson & Börge Göbel & Luis M. Vicente-Arche & Srijani Mallik & Julien Bréhin & Raphaël Salazar & François Bertran & Patrick Le Fèvre & Nicolas Bergeal & Julien Rault & Ingrid, 2022. "Direct visualization of Rashba-split bands and spin/orbital-charge interconversion at KTaO3 interfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Xiaohu Zheng & Zheng-Xin Liu & Cuiwei Zhang & Huaxue Zhou & Chongli Yang & Youguo Shi & Katsumi Tanigaki & Rui-Rui Du, 2024. "Incommensurate charge super-modulation and hidden dipole order in layered kitaev material α-RuCl3," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Dongjoon Lee & Dongwook Go & Hyeon-Jong Park & Wonmin Jeong & Hye-Won Ko & Deokhyun Yun & Daegeun Jo & Soogil Lee & Gyungchoon Go & Jung Hyun Oh & Kab-Jin Kim & Byong-Guk Park & Byoung-Chul Min & Hyun, 2021. "Orbital torque in magnetic bilayers," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Han Li & Enze Lv & Ning Xi & Yuan Gao & Yang Qi & Wei Li & Gang Su, 2024. "Magnetocaloric effect of topological excitations in Kitaev magnets," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Ying Xiang & Qing Li & Yongkai Li & Wei Xie & Huan Yang & Zhiwei Wang & Yugui Yao & Hai-Hu Wen, 2021. "Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Q. Stahl & T. Ritschel & G. Garbarino & F. Cova & A. Isaeva & T. Doert & J. Geck, 2024. "Pressure-tuning of α-RuCl3 towards a quantum spin liquid," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Schmidt, M. & Zimmer, F.M. & Magalhaes, S.G., 2015. "Spin glass induced by infinitesimal disorder in geometrically frustrated kagome lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 416-423.
    12. Youngsu Choi & Suheon Lee & Je-Ho Lee & Seungyeol Lee & Maeng-Je Seong & Kwang-Yong Choi, 2021. "Bosonic spinons in anisotropic triangular antiferromagnets," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    13. Alejandro Lopez-Bezanilla & Jack Raymond & Kelly Boothby & Juan Carrasquilla & Cristiano Nisoli & Andrew D. King, 2023. "Kagome qubit ice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. A. Pustogow & Y. Kawasugi & H. Sakurakoji & N. Tajima, 2023. "Chasing the spin gap through the phase diagram of a frustrated Mott insulator," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    15. S. A. Zvyagin & A. N. Ponomaryov & J. Wosnitza & D. Hirai & Z. Hiroi & M. Gen & Y. Kohama & A. Matsuo & Y. H. Matsuda & K. Kindo, 2022. "Dimensional reduction and incommensurate dynamic correlations in the $$S=\frac{1}{2}$$ S = 1 2 triangular-lattice antiferromagnet Ca3ReO5Cl2," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    16. Alessio Chiocchetta & Dominik Kiese & Carl Philipp Zelle & Francesco Piazza & Sebastian Diehl, 2021. "Cavity-induced quantum spin liquids," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    17. Yuki Nakata & Katsuaki Sugawara & Ashish Chainani & Hirofumi Oka & Changhua Bao & Shaohua Zhou & Pei-Yu Chuang & Cheng-Maw Cheng & Tappei Kawakami & Yasuaki Saruta & Tomoteru Fukumura & Shuyun Zhou & , 2021. "Robust charge-density wave strengthened by electron correlations in monolayer 1T-TaSe2 and 1T-NbSe2," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    18. Xu-Guang Zhou & Han Li & Yasuhiro H. Matsuda & Akira Matsuo & Wei Li & Nobuyuki Kurita & Gang Su & Koichi Kindo & Hidekazu Tanaka, 2023. "Possible intermediate quantum spin liquid phase in α-RuCl3 under high magnetic fields up to 100 T," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    19. Daisuke Yamamoto & Takahiro Sakurai & Ryosuke Okuto & Susumu Okubo & Hitoshi Ohta & Hidekazu Tanaka & Yoshiya Uwatoko, 2021. "Continuous control of classical-quantum crossover by external high pressure in the coupled chain compound CsCuCl3," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    20. Han Zhang & Chengkun Xing & Kyle Noordhoek & Zhaoyu Liu & Tianhao Zhao & Lukas Horák & Qing Huang & Lin Hao & Junyi Yang & Shashi Pandey & Elbio Dagotto & Zhigang Jiang & Jiun-Haw Chu & Yan Xin & Eun , 2023. "Anomalous magnetoresistance by breaking ice rule in Bi2Ir2O7/Dy2Ti2O7 heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52007-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.