IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51943-0.html
   My bibliography  Save this article

Electric-field-enhanced second-harmonic domain contrast and nonreciprocity in a van der Waals antiferromagnet

Author

Listed:
  • Ziqian Wang

    (RIKEN Center for Emergent Matter Science (CEMS))

  • Meng Wang

    (RIKEN Center for Emergent Matter Science (CEMS)
    Beijing Institute of Technology)

  • Jannis Lehmann

    (RIKEN Center for Emergent Matter Science (CEMS)
    ETH Zurich)

  • Yuki Shiomi

    (University of Tokyo)

  • Taka-hisa Arima

    (RIKEN Center for Emergent Matter Science (CEMS)
    University of Tokyo)

  • Naoto Nagaosa

    (RIKEN Center for Emergent Matter Science (CEMS))

  • Yoshinori Tokura

    (RIKEN Center for Emergent Matter Science (CEMS)
    University of Tokyo
    University of Tokyo)

  • Naoki Ogawa

    (RIKEN Center for Emergent Matter Science (CEMS))

Abstract

Imaging antiferromagnetic 180° domains with actively controlled visibility is vital for both fundamental science and sophisticated applications. While optical second-harmonic generation (SHG) is a well-known technique for distinguishing such domains in non-centrosymmetric antiferromagnets, a general material-based strategy to control domain contrast remains elusive. Using van der Waals antiferromagnet MnPS3 as a proof of concept, we demonstrate the tuning of nonreciprocity-induced domain contrast in SHG through applying an in-plane electric field that transforms the magnetic point group to its unitary subgroup. The interference among intrinsic electric-dipole, magnetic-dipole, and field-induced electric-dipole transitions, each carrying distinct characters under space-inversion ( $${{\mathcal{P}}}$$ P ) and time-reversal ( $${{\mathcal{T}}}$$ T ) operations, enables large tuning of domain contrast and nonreciprocity in a broad spectral range. This strategy, generically applicable to systems characterized by $${{\mathcal{P}}}{{\mathcal{T}}}$$ P T -symmetric magnetic groups with a polar unitary subgroup, offers a path to fast electrical modulation of nonlinear nonreciprocal photonic behaviors using antiferromagnets.

Suggested Citation

  • Ziqian Wang & Meng Wang & Jannis Lehmann & Yuki Shiomi & Taka-hisa Arima & Naoto Nagaosa & Yoshinori Tokura & Naoki Ogawa, 2024. "Electric-field-enhanced second-harmonic domain contrast and nonreciprocity in a van der Waals antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51943-0
    DOI: 10.1038/s41467-024-51943-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51943-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51943-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jun-Yi Shan & M. Ye & H. Chu & Sungmin Lee & Je-Geun Park & L. Balents & D. Hsieh, 2021. "Giant modulation of optical nonlinearity by Floquet engineering," Nature, Nature, vol. 600(7888), pages 235-239, December.
    2. Zeyuan Sun & Yangfan Yi & Tiancheng Song & Genevieve Clark & Bevin Huang & Yuwei Shan & Shuang Wu & Di Huang & Chunlei Gao & Zhanghai Chen & Michael McGuire & Ting Cao & Di Xiao & Wei-Tao Liu & Wang Y, 2019. "Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3," Nature, Nature, vol. 572(7770), pages 497-501, August.
    3. Qian Song & Connor A. Occhialini & Emre Ergeçen & Batyr Ilyas & Danila Amoroso & Paolo Barone & Jesse Kapeghian & Kenji Watanabe & Takashi Taniguchi & Antia S. Botana & Silvia Picozzi & Nuh Gedik & Ri, 2022. "Evidence for a single-layer van der Waals multiferroic," Nature, Nature, vol. 602(7898), pages 601-605, February.
    4. Yoshinori Tokura & Naoto Nagaosa, 2018. "Nonreciprocal responses from non-centrosymmetric quantum materials," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruofan Du & Yuzhu Wang & Mo Cheng & Peng Wang & Hui Li & Wang Feng & Luying Song & Jianping Shi & Jun He, 2022. "Two-dimensional multiferroic material of metallic p-doped SnSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Zhenyu Sun & Yueqi Su & Aomiao Zhi & Zhicheng Gao & Xu Han & Kang Wu & Lihong Bao & Yuan Huang & Youguo Shi & Xuedong Bai & Peng Cheng & Lan Chen & Kehui Wu & Xuezeng Tian & Changzheng Wu & Baojie Fen, 2024. "Evidence for multiferroicity in single-layer CuCrSe2," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Junhyeon Jo & Yuan Peisen & Haozhe Yang & Samuel Mañas-Valero & José J. Baldoví & Yao Lu & Eugenio Coronado & Fèlix Casanova & F. Sebastian Bergeret & Marco Gobbi & Luis E. Hueso, 2023. "Local control of superconductivity in a NbSe2/CrSBr van der Waals heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Junlin Xiong & Jiao Xie & Bin Cheng & Yudi Dai & Xinyu Cui & Lizheng Wang & Zenglin Liu & Ji Zhou & Naizhou Wang & Xianghan Xu & Xianhui Chen & Sang-Wook Cheong & Shi-Jun Liang & Feng Miao, 2024. "Electrical switching of Ising-superconducting nonreciprocity for quantum neuronal transistor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Junhyeon Jo & Jung Hwa Kim & Choong H. Kim & Jaebyeong Lee & Daeseong Choe & Inseon Oh & Seunghyun Lee & Zonghoon Lee & Hosub Jin & Jung-Woo Yoo, 2022. "Defect-gradient-induced Rashba effect in van der Waals PtSe2 layers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Feng-Hui Gong & Yun-Long Tang & Yu-Jia Wang & Yu-Ting Chen & Bo Wu & Li-Xin Yang & Yin-Lian Zhu & Xiu-Liang Ma, 2023. "Absence of critical thickness for polar skyrmions with breaking the Kittel’s law," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Hidetoshi Masuda & Takeshi Seki & Jun-ichiro Ohe & Yoichi Nii & Hiroto Masuda & Koki Takanashi & Yoshinori Onose, 2024. "Room temperature chirality switching and detection in a helimagnetic MnAu2 thin film," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Shun Akatsuka & Sebastian Esser & Shun Okumura & Ryota Yambe & Rinsuke Yamada & Moritz M. Hirschmann & Seno Aji & Jonathan S. White & Shang Gao & Yoshichika Onuki & Taka-hisa Arima & Taro Nakajima & M, 2024. "Non-coplanar helimagnetism in the layered van-der-Waals metal DyTe3," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Xu Zhang & Tongshuai Zhu & Shuai Zhang & Zhongqiang Chen & Anke Song & Chong Zhang & Rongzheng Gao & Wei Niu & Yequan Chen & Fucong Fei & Yilin Tai & Guoan Li & Binghui Ge & Wenkai Lou & Jie Shen & Ha, 2024. "Light-induced giant enhancement of nonreciprocal transport at KTaO3-based interfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Pingfan Gu & Cong Wang & Dan Su & Zehao Dong & Qiuyuan Wang & Zheng Han & Kenji Watanabe & Takashi Taniguchi & Wei Ji & Young Sun & Yu Ye, 2023. "Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Shuai Xu & Jiesu Wang & Pan Chen & Kuijuan Jin & Cheng Ma & Shiyao Wu & Erjia Guo & Chen Ge & Can Wang & Xiulai Xu & Hongbao Yao & Jingyi Wang & Donggang Xie & Xinyan Wang & Kai Chang & Xuedong Bai & , 2023. "Magnetoelectric coupling in multiferroics probed by optical second harmonic generation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Xiaoyu Guo & Wenhao Liu & Jonathan Schwartz & Suk Hyun Sung & Dechen Zhang & Makoto Shimizu & Aswin L. N. Kondusamy & Lu Li & Kai Sun & Hui Deng & Harald O. Jeschke & Igor I. Mazin & Robert Hovden & B, 2024. "Extraordinary phase transition revealed in a van der Waals antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Liangting Ye & Wenju Zhou & Dajian Huang & Xiao Jiang & Qiangbing Guo & Xinyu Cao & Shaohua Yan & Xinyu Wang & Donghan Jia & Dequan Jiang & Yonggang Wang & Xiaoqiang Wu & Xiao Zhang & Yang Li & Hechan, 2023. "Manipulation of nonlinear optical responses in layered ferroelectric niobium oxide dihalides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Taras Golod & Vladimir M. Krasnov, 2022. "Demonstration of a superconducting diode-with-memory, operational at zero magnetic field with switchable nonreciprocity," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Tianchuang Luo & Batyr Ilyas & A. von Hoegen & Youjin Lee & Jaena Park & Je-Geun Park & Nuh Gedik, 2024. "Time-of-flight detection of terahertz phonon-polariton," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Fengrui Yao & Volodymyr Multian & Zhe Wang & Nicolas Ubrig & Jérémie Teyssier & Fan Wu & Enrico Giannini & Marco Gibertini & Ignacio Gutiérrez-Lezama & Alberto F. Morpurgo, 2023. "Multiple antiferromagnetic phases and magnetic anisotropy in exfoliated CrBr3 multilayers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. ZhuangEn Fu & Piumi I. Samarawickrama & John Ackerman & Yanglin Zhu & Zhiqiang Mao & Kenji Watanabe & Takashi Taniguchi & Wenyong Wang & Yuri Dahnovsky & Mingzhong Wu & TeYu Chien & Jinke Tang & Allan, 2024. "Tunneling current-controlled spin states in few-layer van der Waals magnets," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Lorenz Bauriedl & Christian Bäuml & Lorenz Fuchs & Christian Baumgartner & Nicolas Paulik & Jonas M. Bauer & Kai-Qiang Lin & John M. Lupton & Takashi Taniguchi & Kenji Watanabe & Christoph Strunk & Ni, 2022. "Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. James Jun He & Yukio Tanaka & Naoto Nagaosa, 2023. "The supercurrent diode effect and nonreciprocal paraconductivity due to the chiral structure of nanotubes," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51943-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.