IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v602y2022i7898d10.1038_s41586-021-04337-x.html
   My bibliography  Save this article

Evidence for a single-layer van der Waals multiferroic

Author

Listed:
  • Qian Song

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Connor A. Occhialini

    (Massachusetts Institute of Technology)

  • Emre Ergeçen

    (Massachusetts Institute of Technology)

  • Batyr Ilyas

    (Massachusetts Institute of Technology)

  • Danila Amoroso

    (c/o Università degli Studi ‘G. D’Annunzio’
    Université de Liège)

  • Paolo Barone

    (Area della Ricerca di Tor Vergata)

  • Jesse Kapeghian

    (Arizona State University)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Antia S. Botana

    (Arizona State University)

  • Silvia Picozzi

    (c/o Università degli Studi ‘G. D’Annunzio’)

  • Nuh Gedik

    (Massachusetts Institute of Technology)

  • Riccardo Comin

    (Massachusetts Institute of Technology)

Abstract

Multiferroic materials have attracted wide interest because of their exceptional static1–3 and dynamical4–6 magnetoelectric properties. In particular, type-II multiferroics exhibit an inversion-symmetry-breaking magnetic order that directly induces ferroelectric polarization through various mechanisms, such as the spin-current or the inverse Dzyaloshinskii–Moriya effect3,7. This intrinsic coupling between the magnetic and dipolar order parameters results in high-strength magnetoelectric effects3,8. Two-dimensional materials possessing such intrinsic multiferroic properties have been long sought for to enable the harnessing of magnetoelectric coupling in nanoelectronic devices1,9,10. Here we report the discovery of type-II multiferroic order in a single atomic layer of the transition-metal-based van der Waals material NiI2. The multiferroic state of NiI2 is characterized by a proper-screw spin helix with given handedness, which couples to the charge degrees of freedom to produce a chirality-controlled electrical polarization. We use circular dichroic Raman measurements to directly probe the magneto-chiral ground state and its electromagnon modes originating from dynamic magnetoelectric coupling. Combining birefringence and second-harmonic-generation measurements with theoretical modelling and simulations, we detect a highly anisotropic electronic state that simultaneously breaks three-fold rotational and inversion symmetry, and supports polar order. The evolution of the optical signatures as a function of temperature and layer number surprisingly reveals an ordered magnetic polar state that persists down to the ultrathin limit of monolayer NiI2. These observations establish NiI2 and transition metal dihalides as a new platform for studying emergent multiferroic phenomena, chiral magnetic textures and ferroelectricity in the two-dimensional limit.

Suggested Citation

  • Qian Song & Connor A. Occhialini & Emre Ergeçen & Batyr Ilyas & Danila Amoroso & Paolo Barone & Jesse Kapeghian & Kenji Watanabe & Takashi Taniguchi & Antia S. Botana & Silvia Picozzi & Nuh Gedik & Ri, 2022. "Evidence for a single-layer van der Waals multiferroic," Nature, Nature, vol. 602(7898), pages 601-605, February.
  • Handle: RePEc:nat:nature:v:602:y:2022:i:7898:d:10.1038_s41586-021-04337-x
    DOI: 10.1038/s41586-021-04337-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04337-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04337-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yangliu Wu & Zhaozhuo Zeng & Haipeng Lu & Xiaocang Han & Chendi Yang & Nanshu Liu & Xiaoxu Zhao & Liang Qiao & Wei Ji & Renchao Che & Longjiang Deng & Peng Yan & Bo Peng, 2024. "Coexistence of ferroelectricity and antiferroelectricity in 2D van der Waals multiferroic," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Feng-Hui Gong & Yun-Long Tang & Yu-Jia Wang & Yu-Ting Chen & Bo Wu & Li-Xin Yang & Yin-Lian Zhu & Xiu-Liang Ma, 2023. "Absence of critical thickness for polar skyrmions with breaking the Kittel’s law," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Pingfan Gu & Cong Wang & Dan Su & Zehao Dong & Qiuyuan Wang & Zheng Han & Kenji Watanabe & Takashi Taniguchi & Wei Ji & Young Sun & Yu Ye, 2023. "Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Luying Song & Ying Zhao & Bingqian Xu & Ruofan Du & Hui Li & Wang Feng & Junbo Yang & Xiaohui Li & Zijia Liu & Xia Wen & Yanan Peng & Yuzhu Wang & Hang Sun & Ling Huang & Yulin Jiang & Yao Cai & Xue J, 2024. "Robust multiferroic in interfacial modulation synthesized wafer-scale one-unit-cell of chromium sulfide," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Ruofan Du & Yuzhu Wang & Mo Cheng & Peng Wang & Hui Li & Wang Feng & Luying Song & Jianping Shi & Jun He, 2022. "Two-dimensional multiferroic material of metallic p-doped SnSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Zhenyu Sun & Yueqi Su & Aomiao Zhi & Zhicheng Gao & Xu Han & Kang Wu & Lihong Bao & Yuan Huang & Youguo Shi & Xuedong Bai & Peng Cheng & Lan Chen & Kehui Wu & Xuezeng Tian & Changzheng Wu & Baojie Fen, 2024. "Evidence for multiferroicity in single-layer CuCrSe2," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Tianchuang Luo & Batyr Ilyas & A. von Hoegen & Youjin Lee & Jaena Park & Je-Geun Park & Nuh Gedik, 2024. "Time-of-flight detection of terahertz phonon-polariton," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Yi Hu & Lukas Rogée & Weizhen Wang & Lyuchao Zhuang & Fangyi Shi & Hui Dong & Songhua Cai & Beng Kang Tay & Shu Ping Lau, 2023. "Extendable piezo/ferroelectricity in nonstoichiometric 2D transition metal dichalcogenides," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Ziqian Wang & Meng Wang & Jannis Lehmann & Yuki Shiomi & Taka-hisa Arima & Naoto Nagaosa & Yoshinori Tokura & Naoki Ogawa, 2024. "Electric-field-enhanced second-harmonic domain contrast and nonreciprocity in a van der Waals antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Qifeng Hu & Yuqiang Huang & Yang Wang & Sujuan Ding & Minjie Zhang & Chenqiang Hua & Linjun Li & Xiangfan Xu & Jinbo Yang & Shengjun Yuan & Kenji Watanabe & Takashi Taniguchi & Yunhao Lu & Chuanhong J, 2024. "Ferrielectricity controlled widely-tunable magnetoelectric coupling in van der Waals multiferroics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:602:y:2022:i:7898:d:10.1038_s41586-021-04337-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.