IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v559y2018i7713d10.1038_s41586-018-0293-x.html
   My bibliography  Save this article

Structure of the origin recognition complex bound to DNA replication origin

Author

Listed:
  • Ningning Li

    (Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University)

  • Wai Hei Lam

    (The Hong Kong University of Science and Technology)

  • Yuanliang Zhai

    (The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology
    School of Biological Sciences, The University of Hong Kong)

  • Jiaxuan Cheng

    (Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University)

  • Erchao Cheng

    (Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University)

  • Yongqian Zhao

    (The Hong Kong University of Science and Technology
    The Hong Kong University of Science and Technology)

  • Ning Gao

    (Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University)

  • Bik-Kwoon Tye

    (The Hong Kong University of Science and Technology
    Cornell University)

Abstract

The six-subunit origin recognition complex (ORC) binds to DNA to mark the site for the initiation of replication in eukaryotes. Here we report a 3 Å cryo-electron microscopy structure of the Saccharomyces cerevisiae ORC bound to a 72-base-pair origin DNA sequence that contains the ARS consensus sequence (ACS) and the B1 element. The ORC encircles DNA through extensive interactions with both phosphate backbone and bases, and bends DNA at the ACS and B1 sites. Specific recognition of thymine residues in the ACS is carried out by a conserved basic amino acid motif of Orc1 in the minor groove, and by a species-specific helical insertion motif of Orc4 in the major groove. Moreover, similar insertions into major and minor grooves are also embedded in the B1 site by basic patch motifs from Orc2 and Orc5, respectively, to contact bases and to bend DNA. This work pinpoints a conserved role of ORC in modulating DNA structure to facilitate origin selection and helicase loading in eukaryotes.

Suggested Citation

  • Ningning Li & Wai Hei Lam & Yuanliang Zhai & Jiaxuan Cheng & Erchao Cheng & Yongqian Zhao & Ning Gao & Bik-Kwoon Tye, 2018. "Structure of the origin recognition complex bound to DNA replication origin," Nature, Nature, vol. 559(7713), pages 217-222, July.
  • Handle: RePEc:nat:nature:v:559:y:2018:i:7713:d:10.1038_s41586-018-0293-x
    DOI: 10.1038/s41586-018-0293-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0293-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0293-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Marten Schmidt & Ran Yang & Ashish Kumar & Olivia Hunker & Jan Seebacher & Franziska Bleichert, 2022. "A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC·DNA·Cdc6," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Humberto Sánchez & Zhaowei Liu & Edo Veen & Theo Laar & John F. X. Diffley & Nynke H. Dekker, 2023. "A chromatinized origin reduces the mobility of ORC and MCM through interactions and spatial constraint," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Sai Li & Michael R. Wasserman & Olga Yurieva & Lu Bai & Michael E. O’Donnell & Shixin Liu, 2022. "Nucleosome-directed replication origin licensing independent of a consensus DNA sequence," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:559:y:2018:i:7713:d:10.1038_s41586-018-0293-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.