IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51498-0.html
   My bibliography  Save this article

Complementary dual-virus strategy drives synthetic target and cognate T-cell engager expression for endogenous-antigen agnostic immunotherapy

Author

Listed:
  • Zaid Taha

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute
    University of Ottawa)

  • Mathieu Joseph François Crupi

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute
    University of Ottawa)

  • Nouf Alluqmani

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute
    University of Ottawa)

  • Duncan MacKenzie

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute)

  • Sydney Vallati

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute
    University of Ottawa)

  • Jack Timothy Whelan

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute
    University of Ottawa)

  • Faiha Fareez

    (McMaster University)

  • Akram Alwithenani

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute
    University of Ottawa)

  • Julia Petryk

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute)

  • Andrew Chen

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute)

  • Marcus Mathew Spinelli

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute)

  • Kristy Ng

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute)

  • Judy Sobh

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute)

  • Christiano Tanese Souza

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute)

  • Priya Rose Bharadwa

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute
    University of Ottawa)

  • Timothy Kit Hin Lee

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute
    University of Ottawa)

  • Dylan Anthony Thomas

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute
    University of Ottawa)

  • Ben Zhen Huang

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute
    University of Ottawa)

  • Omar Kassas

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute)

  • Joanna Poutou

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute)

  • Victoria Heather Gilchrist

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute
    University of Ottawa)

  • Stephen Boulton

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute)

  • Max Thomson

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute)

  • Ricardo Marius

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute)

  • Mohsen Hooshyar

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute)

  • Scott McComb

    (Cancer Immunology Team, National Research Council of Canada, Human Health Therapeutics)

  • Rozanne Arulanandam

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute)

  • Carolina Solange Ilkow

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute
    University of Ottawa)

  • John Cameron Bell

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute
    University of Ottawa)

  • Jean-Simon Diallo

    (Centre for Cancer Therapeutics, Ottawa Hospital Research Institute
    University of Ottawa)

Abstract

Targeted antineoplastic immunotherapies have achieved remarkable clinical outcomes. However, resistance to these therapies due to target absence or antigen shedding limits their efficacy and excludes tumours from candidacy. To address this limitation, here we engineer an oncolytic rhabdovirus, vesicular stomatitis virus (VSVΔ51), to express a truncated targeted antigen, which allows for HER2-targeting with trastuzumab. The truncated HER2 (HER2T) lacks signaling capabilities and is efficiently expressed on infected cell surfaces. VSVΔ51-mediated HER2T expression simulates HER2-positive status in tumours, enabling effective treatment with the antibody-drug conjugate trastuzumab emtansine in vitro, ex vivo, and in vivo. Additionally, we combine VSVΔ51-HER2T with an oncolytic vaccinia virus expressing a HER2-targeted T-cell engager. This dual-virus therapeutic strategy demonstrates potent curative efficacy in vivo in female mice using CD3+ infiltrate for anti-tumour immunity. Our findings showcase the ability to tailor the tumour microenvironment using oncolytic viruses, thereby enhancing compatibility with “off-the-shelf” targeted therapies.

Suggested Citation

  • Zaid Taha & Mathieu Joseph François Crupi & Nouf Alluqmani & Duncan MacKenzie & Sydney Vallati & Jack Timothy Whelan & Faiha Fareez & Akram Alwithenani & Julia Petryk & Andrew Chen & Marcus Mathew Spi, 2024. "Complementary dual-virus strategy drives synthetic target and cognate T-cell engager expression for endogenous-antigen agnostic immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51498-0
    DOI: 10.1038/s41467-024-51498-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51498-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51498-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    3. Rozanne Arulanandam & Cory Batenchuk & Oliver Varette & Chadi Zakaria & Vanessa Garcia & Nicole E. Forbes & Colin Davis & Ramya Krishnan & Raunak Karmacharya & Julie Cox & Anisha Sinha & Andrew Babawy, 2015. "Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing," Nature Communications, Nature, vol. 6(1), pages 1-14, May.
    4. Marie-Eve Wedge & Victoria A. Jennings & Mathieu J. F. Crupi & Joanna Poutou & Taylor Jamieson & Adrian Pelin & Giuseppe Pugliese & Christiano Tanese Souza & Julia Petryk & Brian J. Laight & Meaghan B, 2022. "Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Amanda Finck & Saar I. Gill & Carl H. June, 2020. "Cancer immunotherapy comes of age and looks for maturity," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    6. Jeffrey A. Ruffolo & Lee-Shin Chu & Sai Pooja Mahajan & Jeffrey J. Gray, 2023. "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Anna C. Belkina & Christopher O. Ciccolella & Rina Anno & Richard Halpert & Josef Spidlen & Jennifer E. Snyder-Cappione, 2019. "Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative Artificial Intelligence," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, pages 7-46, National Bureau of Economic Research, Inc.
    2. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Zhao-Shan Chen & Hsiang-Chi Huang & Xiangkun Wang & Karin Schön & Yane Jia & Michael Lebens & Danica F. Besavilla & Janarthan R. Murti & Yanhong Ji & Aishe A. Sarshad & Guohua Deng & Qiyun Zhu & David, 2025. "Influenza A Virus H7 nanobody recognizes a conserved immunodominant epitope on hemagglutinin head and confers heterosubtypic protection," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    6. Sourav Nayak & Thomas J. Peto & Michal Kucharski & Rupam Tripura & James J. Callery & Duong Tien Quang Huy & Mathieu Gendrot & Dysoley Lek & Ho Dang Trung Nghia & Rob W. Pluijm & Nguyen Dong & Le Than, 2024. "Population genomics and transcriptomics of Plasmodium falciparum in Cambodia and Vietnam uncover key components of the artemisinin resistance genetic background," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Efren Garcia-Maldonado & Andrew D. Huber & Sergio C. Chai & Stanley Nithianantham & Yongtao Li & Jing Wu & Shyaron Poudel & Darcie J. Miller & Jayaraman Seetharaman & Taosheng Chen, 2024. "Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Katherine A. Ray & Joshua D. Lutgens & Ramesh Bista & Jie Zhang & Ronak R. Desai & Melissa Hirsch & Takeshi Miyazawa & Antonio Cordova & Adrian T. Keatinge-Clay, 2024. "Assessing and harnessing updated polyketide synthase modules through combinatorial engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Fan Lu & Liang Zhu & Thomas Bromberger & Jun Yang & Qiannan Yang & Jianmin Liu & Edward F. Plow & Markus Moser & Jun Qin, 2022. "Mechanism of integrin activation by talin and its cooperation with kindlin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Zengyu Shao & Jiuwei Lu & Nelli Khudaverdyan & Jikui Song, 2024. "Multi-layered heterochromatin interaction as a switch for DIM2-mediated DNA methylation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Yudong Gao & Daichi Shonai & Matthew Trn & Jieqing Zhao & Erik J. Soderblom & S. Alexandra Garcia-Moreno & Charles A. Gersbach & William C. Wetsel & Geraldine Dawson & Dmitry Velmeshev & Yong-hui Jian, 2024. "Proximity analysis of native proteomes reveals phenotypic modifiers in a mouse model of autism and related neurodevelopmental conditions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Morié Ishida & Adriana E. Golding & Tal Keren-Kaplan & Yan Li & Tamas Balla & Juan S. Bonifacino, 2024. "ARMH3 is an ARL5 effector that promotes PI4KB-catalyzed PI4P synthesis at the trans-Golgi network," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Jutta Diessl & Jens Berndtsson & Filomena Broeskamp & Lukas Habernig & Verena Kohler & Carmela Vazquez-Calvo & Arpita Nandy & Carlotta Peselj & Sofia Drobysheva & Ludovic Pelosi & F.-Nora Vögtle & Fab, 2022. "Manganese-driven CoQ deficiency," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Alexander Kroll & Sahasra Ranjan & Martin K. M. Engqvist & Martin J. Lercher, 2023. "A general model to predict small molecule substrates of enzymes based on machine and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Lisa-Marie Appel & Vedran Franke & Johannes Benedum & Irina Grishkovskaya & Xué Strobl & Anton Polyansky & Gregor Ammann & Sebastian Platzer & Andrea Neudolt & Anna Wunder & Lena Walch & Stefanie Kais, 2023. "The SPOC domain is a phosphoserine binding module that bridges transcription machinery with co- and post-transcriptional regulators," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    19. Maciej K. Kocylowski & Hande Aypek & Wolfgang Bildl & Martin Helmstädter & Philipp Trachte & Bernhard Dumoulin & Sina Wittösch & Lukas Kühne & Ute Aukschun & Carolin Teetzen & Oliver Kretz & Botond Ga, 2022. "A slit-diaphragm-associated protein network for dynamic control of renal filtration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Shunsuke Funaguma & Aritoshi Iida & Yoshihiko Saito & Jantima Tanboon & Francia Victoria Los Reyes & Kyuto Sonehara & Yu-ichi Goto & Yukinori Okada & Shinichiro Hayashi & Ichizo Nishino, 2025. "Retrotrans-genomics identifies aberrant THE1B endogenous retrovirus fusion transcripts in the pathogenesis of sarcoidosis," Nature Communications, Nature, vol. 16(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51498-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.