IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51142-x.html
   My bibliography  Save this article

The neonatal Fc receptor (FcRn) is a pan-arterivirus receptor

Author

Listed:
  • Teressa M. Shaw

    (University of Wisconsin–Madison School of Medicine and Public Health)

  • Devra Huey

    (The Ohio State University
    The Ohio State University)

  • Makky Mousa-Makky

    (The Ohio State University
    The Ohio State University)

  • Jared Compaleo

    (The Ohio State University
    The Ohio State University)

  • Kylie Nennig

    (University of Wisconsin–Madison School of Medicine and Public Health)

  • Aadit P. Shah

    (Stanford University School of Medicine)

  • Fei Jiang

    (The Ohio State University)

  • Xueer Qiu

    (University of Wisconsin–Madison School of Medicine and Public Health)

  • Devon Klipsic

    (University of Wisconsin–Madison)

  • Raymond R. R. Rowland

    (University of Illinois Urbana-Champaign)

  • Igor I. Slukvin

    (University of Wisconsin–Madison School of Medicine and Public Health)

  • Meagan E. Sullender

    (Washington University School of Medicine)

  • Megan T. Baldridge

    (Washington University School of Medicine)

  • Haichang Li

    (The Ohio State University
    The Ohio State University College of Medicine)

  • Cody J. Warren

    (The Ohio State University
    The Ohio State University
    The Ohio State University
    The Ohio State University)

  • Adam L. Bailey

    (University of Wisconsin–Madison School of Medicine and Public Health)

Abstract

Arteriviruses infect a variety of mammalian hosts, but the receptors used by these viruses to enter cells are poorly understood. We identified the neonatal Fc receptor (FcRn) as an important pro-viral host factor via comparative genome-wide CRISPR-knockout screens with multiple arteriviruses. Using a panel of cell lines and divergent arteriviruses, we demonstrate that FcRn is required for the entry step of arterivirus infection and serves as a molecular barrier to arterivirus cross-species infection. We also show that FcRn synergizes with another known arterivirus entry factor, CD163, to mediate arterivirus entry. Overexpression of FcRn and CD163 sensitizes non-permissive cells to infection and enables the culture of fastidious arteriviruses. Treatment of multiple cell lines with a pre-clinical anti-FcRn monoclonal antibody blocked infection and rescued cells from arterivirus-induced death. Altogether, this study identifies FcRn as a novel pan-arterivirus receptor, with implications for arterivirus emergence, cross-species infection, and host-directed pan-arterivirus countermeasure development.

Suggested Citation

  • Teressa M. Shaw & Devra Huey & Makky Mousa-Makky & Jared Compaleo & Kylie Nennig & Aadit P. Shah & Fei Jiang & Xueer Qiu & Devon Klipsic & Raymond R. R. Rowland & Igor I. Slukvin & Meagan E. Sullender, 2024. "The neonatal Fc receptor (FcRn) is a pan-arterivirus receptor," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51142-x
    DOI: 10.1038/s41467-024-51142-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51142-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51142-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kendall R. Sanson & Ruth E. Hanna & Mudra Hegde & Katherine F. Donovan & Christine Strand & Meagan E. Sullender & Emma W. Vaimberg & Amy Goodale & David E. Root & Federica Piccioni & John G. Doench, 2018. "Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    2. Kang Wang & Ling Zhu & Yao Sun & Minhao Li & Xin Zhao & Lunbiao Cui & Li Zhang & George F. Gao & Weiwei Zhai & Fengcai Zhu & Zihe Rao & Xiangxi Wang, 2020. "Structures of Echovirus 30 in complex with its receptors inform a rational prediction for enterovirus receptor usage," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Mang Shi & Xian-Dan Lin & Xiao Chen & Jun-Hua Tian & Liang-Jun Chen & Kun Li & Wen Wang & John-Sebastian Eden & Jin-Jin Shen & Li Liu & Edward C. Holmes & Yong-Zhen Zhang, 2018. "Author Correction: The evolutionary history of vertebrate RNA viruses," Nature, Nature, vol. 561(7722), pages 6-6, September.
    4. Mang Shi & Xian-Dan Lin & Xiao Chen & Jun-Hua Tian & Liang-Jun Chen & Kun Li & Wen Wang & John-Sebastian Eden & Jin-Jin Shen & Li Liu & Edward C. Holmes & Yong-Zhen Zhang, 2018. "The evolutionary history of vertebrate RNA viruses," Nature, Nature, vol. 556(7700), pages 197-202, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. A. Riesle-Sbarbaro & G. Wibbelt & A. Düx & V. Kouakou & M. Bokelmann & K. Hansen-Kant & N. Kirchoff & M. Laue & N. Kromarek & A. Lander & U. Vogel & A. Wahlbrink & D. M. Wozniak & D. P. Scott & J. , 2024. "Selective replication and vertical transmission of Ebola virus in experimentally infected Angolan free-tailed bats," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Gábor Kemenesi & Gábor E. Tóth & Martin Mayora-Neto & Simon Scott & Nigel Temperton & Edward Wright & Elke Mühlberger & Adam J. Hume & Ellen L. Suder & Brigitta Zana & Sándor A. Boldogh & Tamás Görföl, 2022. "Isolation of infectious Lloviu virus from Schreiber’s bats in Hungary," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Guha Asthagiri Arunkumar & Disha Bhavsar & Tiehai Li & Shirin Strohmeier & Veronika Chromikova & Fatima Amanat & Mehman Bunyatov & Patrick C. Wilson & Ali H. Ellebedy & Geert-Jan Boons & Viviana Simon, 2021. "Functionality of the putative surface glycoproteins of the Wuhan spiny eel influenza virus," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Sean A. Misek & Aaron Fultineer & Jeremie Kalfon & Javad Noorbakhsh & Isabella Boyle & Priyanka Roy & Joshua Dempster & Lia Petronio & Katherine Huang & Alham Saadat & Thomas Green & Adam Brown & John, 2024. "Germline variation contributes to false negatives in CRISPR-based experiments with varying burden across ancestries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yudong Gao & Daichi Shonai & Matthew Trn & Jieqing Zhao & Erik J. Soderblom & S. Alexandra Garcia-Moreno & Charles A. Gersbach & William C. Wetsel & Geraldine Dawson & Dmitry Velmeshev & Yong-hui Jian, 2024. "Proximity analysis of native proteomes reveals phenotypic modifiers in a mouse model of autism and related neurodevelopmental conditions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Fei Li & Yizhe Wang & Inah Hwang & Ja-Young Jang & Libo Xu & Zhong Deng & Eun Young Yu & Yiming Cai & Caizhi Wu & Zhenbo Han & Yu-Han Huang & Xiangao Huang & Ling Zhang & Jun Yao & Neal F. Lue & Paul , 2023. "Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Yong Yean Kim & Berkley E. Gryder & Ranuka Sinniah & Megan L. Peach & Jack F. Shern & Abdalla Abdelmaksoud & Silvia Pomella & Girma M. Woldemichael & Benjamin Z. Stanton & David Milewski & Joseph J. B, 2024. "KDM3B inhibitors disrupt the oncogenic activity of PAX3-FOXO1 in fusion-positive rhabdomyosarcoma," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Yanli Liu & Zhong Wu & Jin Zhou & Dinesh K. A. Ramadurai & Katelyn L. Mortenson & Estrella Aguilera-Jimenez & Yifei Yan & Xiaojun Yang & Alison M. Taylor & Katherine E. Varley & Jason Gertz & Peter S., 2021. "A predominant enhancer co-amplified with the SOX2 oncogene is necessary and sufficient for its expression in squamous cancer," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Roberta Esposito & Andrés Lanzós & Tina Uroda & Sunandini Ramnarayanan & Isabel Büchi & Taisia Polidori & Hugo Guillen-Ramirez & Ante Mihaljevic & Bernard Mefi Merlin & Lia Mela & Eugenio Zoni & Lusin, 2023. "Tumour mutations in long noncoding RNAs enhance cell fitness," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Ruitong Li & Olaf Klingbeil & Davide Monducci & Michael J. Young & Diego J. Rodriguez & Zaid Bayyat & Joshua M. Dempster & Devishi Kesar & Xiaoping Yang & Mahdi Zamanighomi & Christopher R. Vakoc & Ta, 2022. "Comparative optimization of combinatorial CRISPR screens," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Hsiao-Yun Chen & Yavuz T. Durmaz & Yixiang Li & Amin H. Sabet & Amir Vajdi & Thomas Denize & Emily Walton & Yasmin Nabil Laimon & John G. Doench & Navin R. Mahadevan & Julie-Aurore Losman & David A. B, 2022. "Regulation of neuroendocrine plasticity by the RNA-binding protein ZFP36L1," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    12. Nathan M. Belliveau & Matthew J. Footer & Emel Akdoǧan & Aaron P. Loon & Sean R. Collins & Julie A. Theriot, 2023. "Whole-genome screens reveal regulators of differentiation state and context-dependent migration in human neutrophils," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    13. Chen Dong & Shuhua Fu & Rowan M. Karvas & Brian Chew & Laura A. Fischer & Xiaoyun Xing & Jessica K. Harrison & Pooja Popli & Ramakrishna Kommagani & Ting Wang & Bo Zhang & Thorold W. Theunissen, 2022. "A genome-wide CRISPR-Cas9 knockout screen identifies essential and growth-restricting genes in human trophoblast stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Vicky Chou & Richard V. Pearse & Aimee J. Aylward & Nancy Ashour & Mariko Taga & Gizem Terzioglu & Masashi Fujita & Seeley B. Fancher & Alina Sigalov & Courtney R. Benoit & Hyo Lee & Matti Lam & Nicho, 2023. "INPP5D regulates inflammasome activation in human microglia," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    15. Jeremy J. Ratiu & William E. Barclay & Elliot Lin & Qun Wang & Sebastian Wellford & Naren Mehta & Melissa J. Harnois & Devon DiPalma & Sumedha Roy & Alejandra V. Contreras & Mari L. Shinohara & David , 2022. "Loss of Zfp335 triggers cGAS/STING-dependent apoptosis of post-β selection thymocytes," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Yandan Yang & Arnold Bolomsky & Thomas Oellerich & Ping Chen & Michele Ceribelli & Björn Häupl & George W. Wright & James D. Phelan & Da Wei Huang & James W. Lord & Callie K. Winkle & Xin Yu & Jan Wis, 2022. "Oncogenic RAS commandeers amino acid sensing machinery to aberrantly activate mTORC1 in multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Pengcheng Shang & Joshua D. Simpson & Gwen M. Taylor & Danica M. Sutherland & Olivia L. Welsh & Pavithra Aravamudhan & Rita Dos Santos Natividade & Kristina Schwab & Joshua J. Michel & Amanda C. Pohol, 2023. "Paired immunoglobulin-like receptor B is an entry receptor for mammalian orthoreovirus," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Amy J. Heidersbach & Kristel M. Dorighi & Javier A. Gomez & Ashley M. Jacobi & Benjamin Haley, 2023. "A versatile, high-efficiency platform for CRISPR-based gene activation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Zachariah L. McLean & Dadi Gao & Kevin Correia & Jennie C. L. Roy & Shota Shibata & Iris N. Farnum & Zoe Valdepenas-Mellor & Marina Kovalenko & Manasa Rapuru & Elisabetta Morini & Jayla Ruliera & Tamm, 2024. "Splice modulators target PMS1 to reduce somatic expansion of the Huntington’s disease-associated CAG repeat," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Wenjie Qiao & Christopher M. Richards & Youlim Kim & James R. Zengel & Siyuan Ding & Harry B. Greenberg & Jan E. Carette, 2024. "MYADM binds human parechovirus 1 and is essential for viral entry," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51142-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.