IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30207-9.html
   My bibliography  Save this article

A genome-wide CRISPR-Cas9 knockout screen identifies essential and growth-restricting genes in human trophoblast stem cells

Author

Listed:
  • Chen Dong

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Shuhua Fu

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Rowan M. Karvas

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Brian Chew

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Laura A. Fischer

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Xiaoyun Xing

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Jessica K. Harrison

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Pooja Popli

    (Washington University School of Medicine)

  • Ramakrishna Kommagani

    (Washington University School of Medicine)

  • Ting Wang

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Bo Zhang

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Thorold W. Theunissen

    (Washington University School of Medicine
    Washington University School of Medicine)

Abstract

The recent derivation of human trophoblast stem cells (hTSCs) provides a scalable in vitro model system of human placental development, but the molecular regulators of hTSC identity have not been systematically explored thus far. Here, we utilize a genome-wide CRISPR-Cas9 knockout screen to comprehensively identify essential and growth-restricting genes in hTSCs. By cross-referencing our data to those from similar genetic screens performed in other cell types, as well as gene expression data from early human embryos, we define hTSC-specific and -enriched regulators. These include both well-established and previously uncharacterized trophoblast regulators, such as ARID3A, GATA2, and TEAD1 (essential), and GCM1, PTPN14, and TET2 (growth-restricting). Integrated analysis of chromatin accessibility, gene expression, and genome-wide location data reveals that the transcription factor TEAD1 regulates the expression of many trophoblast regulators in hTSCs. In the absence of TEAD1, hTSCs fail to complete faithful differentiation into extravillous trophoblast (EVT) cells and instead show a bias towards syncytiotrophoblast (STB) differentiation, thus indicating that this transcription factor safeguards the bipotent lineage potential of hTSCs. Overall, our study provides a valuable resource for dissecting the molecular regulation of human placental development and diseases.

Suggested Citation

  • Chen Dong & Shuhua Fu & Rowan M. Karvas & Brian Chew & Laura A. Fischer & Xiaoyun Xing & Jessica K. Harrison & Pooja Popli & Ramakrishna Kommagani & Ting Wang & Bo Zhang & Thorold W. Theunissen, 2022. "A genome-wide CRISPR-Cas9 knockout screen identifies essential and growth-restricting genes in human trophoblast stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30207-9
    DOI: 10.1038/s41467-022-30207-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30207-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30207-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vicente Perez-Garcia & Elena Fineberg & Robert Wilson & Alexander Murray & Cecilia Icoresi Mazzeo & Catherine Tudor & Arnold Sienerth & Jacqueline K. White & Elizabeth Tuck & Edward J. Ryder & Diane G, 2018. "Placentation defects are highly prevalent in embryonic lethal mouse mutants," Nature, Nature, vol. 555(7697), pages 463-468, March.
    2. Hitoshi Niwa & Kazuya Ogawa & Daisuke Shimosato & Kenjiro Adachi, 2009. "A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells," Nature, Nature, vol. 460(7251), pages 118-122, July.
    3. Lifeng Xiang & Yu Yin & Yun Zheng & Yanping Ma & Yonggang Li & Zhigang Zhao & Junqiang Guo & Zongyong Ai & Yuyu Niu & Kui Duan & Jingjing He & Shuchao Ren & Dan Wu & Yun Bai & Zhouchun Shang & Xi Dai , 2020. "A developmental landscape of 3D-cultured human pre-gastrulation embryos," Nature, Nature, vol. 577(7791), pages 537-542, January.
    4. Claudia Gerri & Afshan McCarthy & Gregorio Alanis-Lobato & Andrej Demtschenko & Alexandre Bruneau & Sophie Loubersac & Norah M. E. Fogarty & Daniel Hampshire & Kay Elder & Phil Snell & Leila Christie , 2020. "Initiation of a conserved trophectoderm program in human, cow and mouse embryos," Nature, Nature, vol. 587(7834), pages 443-447, November.
    5. Xiaodong Liu & John F. Ouyang & Fernando J. Rossello & Jia Ping Tan & Kathryn C. Davidson & Daniela S. Valdes & Jan Schröder & Yu B. Y. Sun & Joseph Chen & Anja S. Knaupp & Guizhi Sun & Hun S. Chy & Z, 2020. "Reprogramming roadmap reveals route to human induced trophoblast stem cells," Nature, Nature, vol. 586(7827), pages 101-107, October.
    6. Sha Mi & Xinhua Lee & Xiang-ping Li & Geertruida M. Veldman & Heather Finnerty & Lisa Racie & Edward LaVallie & Xiang-Yang Tang & Philippe Edouard & Steve Howes & James C. Keith & John M. McCoy, 2000. "Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis," Nature, Nature, vol. 403(6771), pages 785-789, February.
    7. Roser Vento-Tormo & Mirjana Efremova & Rachel A. Botting & Margherita Y. Turco & Miquel Vento-Tormo & Kerstin B. Meyer & Jong-Eun Park & Emily Stephenson & Krzysztof Polański & Angela Goncalves & Lucy, 2018. "Single-cell reconstruction of the early maternal–fetal interface in humans," Nature, Nature, vol. 563(7731), pages 347-353, November.
    8. Kendall R. Sanson & Ruth E. Hanna & Mudra Hegde & Katherine F. Donovan & Christine Strand & Meagan E. Sullender & Emma W. Vaimberg & Amy Goodale & David E. Root & Federica Piccioni & John G. Doench, 2018. "Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaela M. Varberg & Esteban M. Dominguez & Boryana Koseva & Joseph M. Varberg & Ross P. McNally & Ayelen Moreno-Irusta & Emily R. Wesley & Khursheed Iqbal & Warren A. Cheung & Carl Schwendinger-Schreck, 2023. "Extravillous trophoblast cell lineage development is associated with active remodeling of the chromatin landscape," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    2. Mijeong Kim & Yu Jin Jang & Muyoung Lee & Qingqing Guo & Albert J. Son & Nikita A. Kakkad & Abigail B. Roland & Bum-Kyu Lee & Jonghwan Kim, 2024. "The transcriptional regulatory network modulating human trophoblast stem cells to extravillous trophoblast differentiation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Yueli Yang & Wenqi Jia & Zhiwei Luo & Yunpan Li & Hao Liu & Lixin Fu & Jinxiu Li & Yu Jiang & Junjian Lai & Haiwei Li & Babangida Jabir Saeed & Yi Zou & Yuan Lv & Liang Wu & Ting Zhou & Yongli Shan & , 2024. "VGLL1 cooperates with TEAD4 to control human trophectoderm lineage specification," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yueli Yang & Wenqi Jia & Zhiwei Luo & Yunpan Li & Hao Liu & Lixin Fu & Jinxiu Li & Yu Jiang & Junjian Lai & Haiwei Li & Babangida Jabir Saeed & Yi Zou & Yuan Lv & Liang Wu & Ting Zhou & Yongli Shan & , 2024. "VGLL1 cooperates with TEAD4 to control human trophectoderm lineage specification," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Shilei Bi & Lijun Huang & Yongjie Chen & Zhenhua Hu & Shanze Li & Yifan Wang & Baoying Huang & Lizi Zhang & Yuanyuan Huang & Beibei Dai & Lili Du & Zhaowei Tu & Yijing Wang & Dan Xu & Xiaotong Xu & We, 2024. "KAT8-mediated H4K16ac is essential for sustaining trophoblast self-renewal and proliferation via regulating CDX2," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Liang-Jie Wang & Chie-Pein Chen & Yun-Shien Lee & Pui-Sze Ng & Geen-Dong Chang & Yu-Hsuan Pao & Hsiao-Fan Lo & Chao-Hsiang Peng & Mei-Leng Cheong & Hungwen Chen, 2022. "Functional antagonism between ΔNp63α and GCM1 regulates human trophoblast stemness and differentiation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Dasol Han & Guojing Liu & Yujeong Oh & Seyoun Oh & Seungbok Yang & Lori Mandjikian & Neha Rani & Maria C. Almeida & Kenneth S. Kosik & Jiwon Jang, 2023. "ZBTB12 is a molecular barrier to dedifferentiation in human pluripotent stem cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Kaela M. Varberg & Esteban M. Dominguez & Boryana Koseva & Joseph M. Varberg & Ross P. McNally & Ayelen Moreno-Irusta & Emily R. Wesley & Khursheed Iqbal & Warren A. Cheung & Carl Schwendinger-Schreck, 2023. "Extravillous trophoblast cell lineage development is associated with active remodeling of the chromatin landscape," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    6. Eric Buren & David Azzara & Javier Rangel-Moreno & Maria de la Luz Garcia-Hernandez & Shawn P. Murphy & Ethan D. Cohen & Ethan Lewis & Xihong Lin & Hae-Ryung Park, 2024. "Single-cell RNA sequencing reveals placental response under environmental stress," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Sean A. Misek & Aaron Fultineer & Jeremie Kalfon & Javad Noorbakhsh & Isabella Boyle & Priyanka Roy & Joshua Dempster & Lia Petronio & Katherine Huang & Alham Saadat & Thomas Green & Adam Brown & John, 2024. "Germline variation contributes to false negatives in CRISPR-based experiments with varying burden across ancestries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Yudong Gao & Daichi Shonai & Matthew Trn & Jieqing Zhao & Erik J. Soderblom & S. Alexandra Garcia-Moreno & Charles A. Gersbach & William C. Wetsel & Geraldine Dawson & Dmitry Velmeshev & Yong-hui Jian, 2024. "Proximity analysis of native proteomes reveals phenotypic modifiers in a mouse model of autism and related neurodevelopmental conditions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Haipeng Fu & Tingyu Wang & Xiaohui Kong & Kun Yan & Yang Yang & Jingyi Cao & Yafei Yuan & Nan Wang & Kehkooi Kee & Zhi John Lu & Qiaoran Xi, 2022. "A Nodal enhanced micropeptide NEMEP regulates glucose uptake during mesendoderm differentiation of embryonic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Laura Santini & Saskia Kowald & Luis Miguel Cerron-Alvan & Michelle Huth & Anna Philina Fabing & Giovanni Sestini & Nicolas Rivron & Martin Leeb, 2024. "FoxO transcription factors actuate the formative pluripotency specific gene expression programme," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Magnus Zethoven & Luciano Martelotto & Andrew Pattison & Blake Bowen & Shiva Balachander & Aidan Flynn & Fernando J. Rossello & Annette Hogg & Julie A. Miller & Zdenek Frysak & Sean Grimmond & Lauren , 2022. "Single-nuclei and bulk-tissue gene-expression analysis of pheochromocytoma and paraganglioma links disease subtypes with tumor microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Kate E. Stanley & Tatjana Jatsenko & Stefania Tuveri & Dhanya Sudhakaran & Lore Lannoo & Kristel Calsteren & Marie Borre & Ilse Parijs & Leen Coillie & Kris Bogaert & Rodrigo Almeida Toledo & Liesbeth, 2024. "Cell type signatures in cell-free DNA fragmentation profiles reveal disease biology," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Javier Rodríguez-Ubreva & Anna Arutyunyan & Marc Jan Bonder & Lucía Del Pino-Molina & Stephen J. Clark & Carlos de la Calle-Fabregat & Luz Garcia-Alonso & Louis-François Handfield & Laura Ciudad & Edu, 2022. "Single-cell Atlas of common variable immunodeficiency shows germinal center-associated epigenetic dysregulation in B-cell responses," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Mijeong Kim & Yu Jin Jang & Muyoung Lee & Qingqing Guo & Albert J. Son & Nikita A. Kakkad & Abigail B. Roland & Bum-Kyu Lee & Jonghwan Kim, 2024. "The transcriptional regulatory network modulating human trophoblast stem cells to extravillous trophoblast differentiation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Vicky Chou & Richard V. Pearse & Aimee J. Aylward & Nancy Ashour & Mariko Taga & Gizem Terzioglu & Masashi Fujita & Seeley B. Fancher & Alina Sigalov & Courtney R. Benoit & Hyo Lee & Matti Lam & Nicho, 2023. "INPP5D regulates inflammasome activation in human microglia," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    17. Teressa M. Shaw & Devra Huey & Makky Mousa-Makky & Jared Compaleo & Kylie Nennig & Aadit P. Shah & Fei Jiang & Xueer Qiu & Devon Klipsic & Raymond R. R. Rowland & Igor I. Slukvin & Meagan E. Sullender, 2024. "The neonatal Fc receptor (FcRn) is a pan-arterivirus receptor," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Jeremy J. Ratiu & William E. Barclay & Elliot Lin & Qun Wang & Sebastian Wellford & Naren Mehta & Melissa J. Harnois & Devon DiPalma & Sumedha Roy & Alejandra V. Contreras & Mari L. Shinohara & David , 2022. "Loss of Zfp335 triggers cGAS/STING-dependent apoptosis of post-β selection thymocytes," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    19. Qian-Yue Zhang & Xiao-Ping Ye & Zheng Zhou & Chen-Fang Zhu & Rui Li & Ya Fang & Rui-Jia Zhang & Lu Li & Wei Liu & Zheng Wang & Shi-Yang Song & Sang-Yu Lu & Shuang-Xia Zhao & Jian-Nan Lin & Huai-Dong S, 2022. "Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in Hashimoto’s thyroiditis," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    20. Fei Li & Yizhe Wang & Inah Hwang & Ja-Young Jang & Libo Xu & Zhong Deng & Eun Young Yu & Yiming Cai & Caizhi Wu & Zhenbo Han & Yu-Han Huang & Xiangao Huang & Ling Zhang & Jun Yao & Neal F. Lue & Paul , 2023. "Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30207-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.