IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51016-2.html
   My bibliography  Save this article

Mitochondrial network reorganization and transient expansion during oligodendrocyte generation

Author

Listed:
  • Xhoela Bame

    (Dartmouth College)

  • Robert A. Hill

    (Dartmouth College)

Abstract

Oligodendrocyte precursor cells (OPCs) give rise to myelinating oligodendrocytes of the brain. This process persists throughout life and is essential for recovery from neurodegeneration. To better understand the cellular checkpoints that occur during oligodendrogenesis, we determined the mitochondrial distribution and morphometrics across the oligodendrocyte lineage in mouse and human cerebral cortex. During oligodendrocyte generation, mitochondrial content expands concurrently with a change in subcellular partitioning towards the distal processes. These changes are followed by an abrupt loss of mitochondria in the oligodendrocyte processes and myelin, coinciding with sheath compaction. This reorganization and extensive expansion and depletion take 3 days. Oligodendrocyte mitochondria are stationary over days while OPC mitochondrial motility is modulated by animal arousal state within minutes. Aged OPCs also display decreased mitochondrial size, volume fraction, and motility. Thus, mitochondrial dynamics are linked to oligodendrocyte generation, dynamically modified by their local microenvironment, and altered in the aging brain.

Suggested Citation

  • Xhoela Bame & Robert A. Hill, 2024. "Mitochondrial network reorganization and transient expansion during oligodendrocyte generation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51016-2
    DOI: 10.1038/s41467-024-51016-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51016-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51016-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ursula Fünfschilling & Lotti M. Supplie & Don Mahad & Susann Boretius & Aiman S. Saab & Julia Edgar & Bastian G. Brinkmann & Celia M. Kassmann & Iva D. Tzvetanova & Wiebke Möbius & Francisca Diaz & Di, 2012. "Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity," Nature, Nature, vol. 485(7399), pages 517-521, May.
    2. Frederic Fiore & Khaleel Alhalaseh & Ram R. Dereddi & Felipe Bodaleo Torres & Ilknur Çoban & Ali Harb & Amit Agarwal, 2023. "Norepinephrine regulates calcium signals and fate of oligodendrocyte precursor cells in the mouse cerebral cortex," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    3. Stanislaw Mitew & Ilan Gobius & Laura R. Fenlon & Stuart J. McDougall & David Hawkes & Yao Lulu Xing & Helena Bujalka & Andrew L. Gundlach & Linda J. Richards & Trevor J. Kilpatrick & Tobias D. Merson, 2018. "Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kunkun Zhang & Shaoxuan Chen & Qihua Yang & Shuanghui Guo & Qiang Chen & Zhixiong Liu & Li Li & Mengyun Jiang & Hongda Li & Jin Hu & Xu Pan & Wenbo Deng & Naian Xiao & Bo Wang & Zhan-xiang Wang & Lian, 2022. "The Oligodendrocyte Transcription Factor 2 OLIG2 regulates transcriptional repression during myelinogenesis in rodents," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Xiao-Ru Ma & Xudong Zhu & Yujie Xiao & Hui-Min Gu & Shuang-Shuang Zheng & Liang Li & Fan Wang & Zhao-Jun Dong & Di-Xian Wang & Yang Wu & Chenyu Yang & Wenhong Jiang & Ke Yao & Yue Yin & Yang Zhang & C, 2022. "Restoring nuclear entry of Sirtuin 2 in oligodendrocyte progenitor cells promotes remyelination during ageing," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Frederic Fiore & Khaleel Alhalaseh & Ram R. Dereddi & Felipe Bodaleo Torres & Ilknur Çoban & Ali Harb & Amit Agarwal, 2023. "Norepinephrine regulates calcium signals and fate of oligodendrocyte precursor cells in the mouse cerebral cortex," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    4. Li-Pao Fang & Na Zhao & Laura C. Caudal & Hsin-Fang Chang & Renping Zhao & Ching-Hsin Lin & Nadine Hainz & Carola Meier & Bernhard Bettler & Wenhui Huang & Anja Scheller & Frank Kirchhoff & Xianshu Ba, 2022. "Impaired bidirectional communication between interneurons and oligodendrocyte precursor cells affects social cognitive behavior," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Takahiro Shimizu & Stuart G. Nayar & Matthew Swire & Yi Jiang & Matthew Grist & Malte Kaller & Cassandra Sampaio Baptista & David M. Bannerman & Heidi Johansen-Berg & Katsutoshi Ogasawara & Koujiro To, 2023. "Oligodendrocyte dynamics dictate cognitive performance outcomes of working memory training in mice," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Siyi He & Yue Zhao & Yongsheng Fan & Xue Zhao & Jun Yu & Jie Xie & Chunhong Wang & Jianmei Su, 2019. "Research Trends and Hotspots Analysis Related to Monocarboxylate Transporter 1: A Study Based on Bibliometric Analysis," IJERPH, MDPI, vol. 16(7), pages 1-15, March.
    7. Chang Hoon Cho & Ilana Vasilisa Deyneko & Dylann Cordova-Martinez & Juan Vazquez & Anne S. Maguire & Jenny R. Diaz & Abigail U. Carbonell & Jaafar O. Tindi & Min-Hui Cui & Roman Fleysher & Sophie Molh, 2023. "ANKS1B encoded AIDA-1 regulates social behaviors by controlling oligodendrocyte function," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51016-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.