IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i7p1091-d217511.html
   My bibliography  Save this article

Research Trends and Hotspots Analysis Related to Monocarboxylate Transporter 1: A Study Based on Bibliometric Analysis

Author

Listed:
  • Siyi He

    (Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, China
    These authors contributed equally to this work.)

  • Yue Zhao

    (Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, China
    These authors contributed equally to this work.)

  • Yongsheng Fan

    (Department of Toxicology, School of Public Health, Wuhan University, Wuhan 430071, China)

  • Xue Zhao

    (Department of Toxicology, School of Public Health, Wuhan University, Wuhan 430071, China)

  • Jun Yu

    (Department of Toxicology, School of Public Health, Wuhan University, Wuhan 430071, China)

  • Jie Xie

    (Department of Toxicology, School of Public Health, Wuhan University, Wuhan 430071, China)

  • Chunhong Wang

    (Department of Toxicology, School of Public Health, Wuhan University, Wuhan 430071, China)

  • Jianmei Su

    (Department of Toxicology, School of Public Health, Wuhan University, Wuhan 430071, China)

Abstract

Background : Monocarboxylate transport protein 1 (MCT1) has been defined as a critical regulator in tumor energy metabolism, but bibliometric analysis of MCT1 research is rare. This study aimed to comprehensively analyze the global scientific output of MCT1 research and explore the hotspots and frontiers from the past decade. Methods : Publications and their literature information from 2008 to 2018 were retrieved from the Web of Science Core Collection database. We used Microsoft Excel 2016 to detect the trend of annual numbers of publications, and used Citespace V software as the bibliometric method to analyze the research areas, countries, institutions, authors, journals, research hotspots, and research frontiers. Results : A total of 851 publications were identified with an increasing trend. Relevant literature mainly focused on the field of oncology. The most prolific country and institution were the USA and University of Minho, respectively. Baltazar was the most productive author while Halestrap had the highest co-citations. The hottest topics in MCT1 were hypoxia, gene expression, and CD147 over the last decade. The three research frontier topics were proliferation, tumor cell, and resistance. The special role of MCT1 in human tumor cells has become the focus for scholars recently. Conclusion : The development prospects of MCT1 research could be expected and researchers should pay attention to the clinical significance of MCT1 inhibitors as anti-cancer or immunosuppressive drugs and the possibility of drug-resistance formation.

Suggested Citation

  • Siyi He & Yue Zhao & Yongsheng Fan & Xue Zhao & Jun Yu & Jie Xie & Chunhong Wang & Jianmei Su, 2019. "Research Trends and Hotspots Analysis Related to Monocarboxylate Transporter 1: A Study Based on Bibliometric Analysis," IJERPH, MDPI, vol. 16(7), pages 1-15, March.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:7:p:1091-:d:217511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/7/1091/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/7/1091/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongsheng Fan & Guangxia Yu & Jun Yu & Jiantao Sun & Yu Wu & Xue Zhao & Yu Meng & Zhangdong He & Chunhong Wang, 2018. "Research Trends and Hotspots Analysis Related to the Effects of Xenobiotics on Glucose Metabolism in Male Testes," IJERPH, MDPI, vol. 15(8), pages 1-12, July.
    2. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    3. Arzu Tugce Guler & Cathelijn J. F. Waaijer & Magnus Palmblad, 2016. "Scientific workflows for bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 385-398, May.
    4. Ursula Fünfschilling & Lotti M. Supplie & Don Mahad & Susann Boretius & Aiman S. Saab & Julia Edgar & Bastian G. Brinkmann & Celia M. Kassmann & Iva D. Tzvetanova & Wiebke Möbius & Francisca Diaz & Di, 2012. "Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity," Nature, Nature, vol. 485(7399), pages 517-521, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingling Wang & Enjun Xia & Hao Li & Wei Wang, 2019. "A Bibliometric Analysis of Crowdsourcing in the Field of Public Health," IJERPH, MDPI, vol. 16(20), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhijun & Fei, Jiangang & Du, Yuquan & Ong, Kok-Leong & Arisian, Sobhan, 2024. "A near real-time carbon accounting framework for the decarbonization of maritime transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    2. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitalization of the agricultural sector: the impact of ICT on the development of enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), December.
    3. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    4. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    5. Kunkun Zhang & Shaoxuan Chen & Qihua Yang & Shuanghui Guo & Qiang Chen & Zhixiong Liu & Li Li & Mengyun Jiang & Hongda Li & Jin Hu & Xu Pan & Wenbo Deng & Naian Xiao & Bo Wang & Zhan-xiang Wang & Lian, 2022. "The Oligodendrocyte Transcription Factor 2 OLIG2 regulates transcriptional repression during myelinogenesis in rodents," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Hailiang Li & M. James C. Crabbe & Haikui Chen, 2020. "History and Trends in Ecological Stoichiometry Research from 1992 to 2019: A Scientometric Analysis," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    7. Nina Sakinah Ahmad Rofaie & Seuk Wai Phoong & Muzalwana Abdul Talib & Ainin Sulaiman, 2023. "Light-emitting diode (LED) research: A bibliometric analysis during 2003–2018," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 173-191, February.
    8. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    9. Yanrong Qiu & Kaihuai Liao & Yanting Zou & Gengzhi Huang, 2022. "A Bibliometric Analysis on Research Regarding Residential Segregation and Health Based on CiteSpace," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    10. Jinyi Li & Zhen Liu & Guizhong Han & Peter Demian & Mohamed Osmani, 2024. "The Relationship Between Artificial Intelligence (AI) and Building Information Modeling (BIM) Technologies for Sustainable Building in the Context of Smart Cities," Sustainability, MDPI, vol. 16(24), pages 1-38, December.
    11. Zoltán Lakner & Brigitta Plasek & Gyula Kasza & Anna Kiss & Sándor Soós & Ágoston Temesi, 2021. "Towards Understanding the Food Consumer Behavior–Food Safety–Sustainability Triangle: A Bibliometric Approach," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    12. Wang Guizhou & Zhang Si & Yu Tao & Ning Yu, 2021. "A Systematic Overview of Blockchain Research," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 205-238, June.
    13. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    14. Benu George & Pradeep Varathan & T. V. Suchithra, 2020. "Meta-analysis on big data of bioactive compounds from mangrove ecosystem to treat neurodegenerative disease," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1539-1561, March.
    15. Kai Hu & Huayi Wu & Kunlun Qi & Jingmin Yu & Siluo Yang & Tianxing Yu & Jie Zheng & Bo Liu, 2018. "A domain keyword analysis approach extending Term Frequency-Keyword Active Index with Google Word2Vec model," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1031-1068, March.
    16. Zhichao Wang & Valentin Zelenyuk, 2021. "Performance Analysis of Hospitals in Australia and its Peers: A Systematic Review," CEPA Working Papers Series WP012021, School of Economics, University of Queensland, Australia.
    17. Burmaoglu, Serhat & Sartenaer, Olivier & Porter, Alan, 2019. "Conceptual definition of technology emergence: A long journey from philosophy of science to science policy," Technology in Society, Elsevier, vol. 59(C).
    18. Hyejin Park & Han Woo Park, 2018. "Two-side face of knowledge building using scientometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(6), pages 2815-2836, November.
    19. Théodore Nikiema & Eugène C. Ezin & Sylvain Kpenavoun Chogou, 2023. "Bibliometric Analysis of the State of Research on Agroecology Adoption and Methods Used for Its Assessment," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    20. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:7:p:1091-:d:217511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.