IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51007-3.html
   My bibliography  Save this article

Structures of influenza A and B replication complexes give insight into avian to human host adaptation and reveal a role of ANP32 as an electrostatic chaperone for the apo-polymerase

Author

Listed:
  • Benoît Arragain

    (European Molecular Biology Laboratory)

  • Tim Krischuns

    (Université Paris Cité, CNRS UMR3569, RNA Biology of Influenza Virus
    Department of Infectious Diseases, Virology, Schaller Research Group)

  • Martin Pelosse

    (European Molecular Biology Laboratory)

  • Petra Drncova

    (European Molecular Biology Laboratory)

  • Martin Blackledge

    (Université Grenoble-Alpes-CEA-CNRS UMR5075)

  • Nadia Naffakh

    (Université Paris Cité, CNRS UMR3569, RNA Biology of Influenza Virus)

  • Stephen Cusack

    (European Molecular Biology Laboratory)

Abstract

Replication of influenza viral RNA depends on at least two viral polymerases, a parental replicase and an encapsidase, and cellular factor ANP32. ANP32 comprises an LRR domain and a long C-terminal low complexity acidic region (LCAR). Here we present evidence suggesting that ANP32 is recruited to the replication complex as an electrostatic chaperone that stabilises the encapsidase moiety within apo-polymerase symmetric dimers that are distinct for influenza A and B polymerases. The ANP32 bound encapsidase, then forms the asymmetric replication complex with the replicase, which is embedded in a parental ribonucleoprotein particle (RNP). Cryo-EM structures reveal the architecture of the influenza A and B replication complexes and the likely trajectory of the nascent RNA product into the encapsidase. The cryo-EM map of the FluB replication complex shows extra density attributable to the ANP32 LCAR wrapping around and stabilising the apo-encapsidase conformation. These structures give new insight into the various mutations that adapt avian strain polymerases to use the distinct ANP32 in mammalian cells.

Suggested Citation

  • Benoît Arragain & Tim Krischuns & Martin Pelosse & Petra Drncova & Martin Blackledge & Nadia Naffakh & Stephen Cusack, 2024. "Structures of influenza A and B replication complexes give insight into avian to human host adaptation and reveal a role of ANP32 as an electrostatic chaperone for the apo-polymerase," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51007-3
    DOI: 10.1038/s41467-024-51007-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51007-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51007-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liangqian Huang & Trisha Agrawal & Guixin Zhu & Sixiang Yu & Liming Tao & JiaBei Lin & Ronen Marmorstein & James Shorter & Xiaolu Yang, 2021. "DAXX represents a new type of protein-folding enabler," Nature, Nature, vol. 597(7874), pages 132-137, September.
    2. Carol M. Sheppard & Daniel H. Goldhill & Olivia C. Swann & Ecco Staller & Rebecca Penn & Olivia K. Platt & Ksenia Sukhova & Laury Baillon & Rebecca Frise & Thomas P. Peacock & Ervin Fodor & Wendy S. B, 2023. "An Influenza A virus can evolve to use human ANP32E through altering polymerase dimerization," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Benjamin Mänz & Linda Brunotte & Peter Reuther & Martin Schwemmle, 2012. "Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells," Nature Communications, Nature, vol. 3(1), pages 1-11, January.
    4. Jason S. Long & Efstathios S. Giotis & Olivier Moncorgé & Rebecca Frise & Bhakti Mistry & Joe James & Mireille Morisson & Munir Iqbal & Alain Vignal & Michael A. Skinner & Wendy S. Barclay, 2016. "Species difference in ANP32A underlies influenza A virus polymerase host restriction," Nature, Nature, vol. 529(7584), pages 101-104, January.
    5. Narin Hengrung & Kamel El Omari & Itziar Serna Martin & Frank T. Vreede & Stephen Cusack & Robert P. Rambo & Clemens Vonrhein & Gérard Bricogne & David I. Stuart & Jonathan M. Grimes & Ervin Fodor, 2015. "Crystal structure of the RNA-dependent RNA polymerase from influenza C virus," Nature, Nature, vol. 527(7576), pages 114-117, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franziska Günl & Tim Krischuns & Julian A. Schreiber & Lea Henschel & Marius Wahrenburg & Hannes C. A. Drexler & Sebastian A. Leidel & Vlad Cojocaru & Guiscard Seebohm & Alexander Mellmann & Martin Sc, 2023. "The ubiquitination landscape of the influenza A virus polymerase," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Iqbal Mahmud & Guimei Tian & Jia Wang & Tarun E. Hutchinson & Brandon J. Kim & Nikee Awasthee & Seth Hale & Chengcheng Meng & Allison Moore & Liming Zhao & Jessica E. Lewis & Aaron Waddell & Shangtao , 2023. "DAXX drives de novo lipogenesis and contributes to tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Alewo Idoko-Akoh & Daniel H. Goldhill & Carol M. Sheppard & Dagmara Bialy & Jessica L. Quantrill & Ksenia Sukhova & Jonathan C. Brown & Samuel Richardson & Ciara Campbell & Lorna Taylor & Adrian Sherm, 2023. "Creating resistance to avian influenza infection through genome editing of the ANP32 gene family," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Lu Xue & Tiancai Chang & Zimu Li & Chenchen Wang & Heyu Zhao & Mei Li & Peng Tang & Xin Wen & Mengmeng Yu & Jiqin Wu & Xichen Bao & Xiaojun Wang & Peng Gong & Jun He & Xinwen Chen & Xiaoli Xiong, 2024. "Cryo-EM structures of Thogoto virus polymerase reveal unique RNA transcription and replication mechanisms among orthomyxoviruses," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Jeremy R. Keown & Zihan Zhu & Loïc Carrique & Haitian Fan & Alexander P. Walker & Itziar Serna Martin & Els Pardon & Jan Steyaert & Ervin Fodor & Jonathan M. Grimes, 2022. "Mapping inhibitory sites on the RNA polymerase of the 1918 pandemic influenza virus using nanobodies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Sheng Chen & Anuradhika Puri & Braxton Bell & Joseph Fritsche & Hector H. Palacios & Maurie Balch & Macy L. Sprunger & Matthew K. Howard & Jeremy J. Ryan & Jessica N. Haines & Gary J. Patti & Albert A, 2024. "HTRA1 disaggregates α-synuclein amyloid fibrils and converts them into non-toxic and seeding incompetent species," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Alice Mac Kain & Ghizlane Maarifi & Sophie-Marie Aicher & Nathalie Arhel & Artem Baidaliuk & Sandie Munier & Flora Donati & Thomas Vallet & Quang Dinh Tran & Alexandra Hardy & Maxime Chazal & François, 2022. "Identification of DAXX as a restriction factor of SARS-CoV-2 through a CRISPR/Cas9 screen," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Nitish Gulve & Chenhe Su & Zhong Deng & Samantha S. Soldan & Olga Vladimirova & Jayamanna Wickramasinghe & Hongwu Zheng & Andrew V. Kossenkov & Paul. M. Lieberman, 2022. "DAXX-ATRX regulation of p53 chromatin binding and DNA damage response," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Tim Krischuns & Benoît Arragain & Catherine Isel & Sylvain Paisant & Matthias Budt & Thorsten Wolff & Stephen Cusack & Nadia Naffakh, 2024. "The host RNA polymerase II C-terminal domain is the anchor for replication of the influenza virus genome," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51007-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.