IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50862-4.html
   My bibliography  Save this article

Probing charge redistribution at the interface of self-assembled cyclo-P5 pentamers on Ag(111)

Author

Listed:
  • Outhmane Chahib

    (University of Basel)

  • Yuling Yin

    (Shenzhen Institute of Advanced Technology
    Shenzhen University of Advanced Technology)

  • Jung-Ching Liu

    (University of Basel)

  • Chao Li

    (University of Basel)

  • Thilo Glatzel

    (University of Basel)

  • Feng Ding

    (Shenzhen Institute of Advanced Technology
    Shenzhen University of Advanced Technology)

  • Qinghong Yuan

    (East China Normal University)

  • Ernst Meyer

    (University of Basel)

  • Rémy Pawlak

    (University of Basel)

Abstract

Phosphorus pentamers (cyclo-P5) are unstable in nature but can be synthesized at the Ag(111) surface. Unlike monolayer black phosphorous, little is known about their electronic properties when in contact with metal electrodes, although this is crucial for future applications. Here, we characterize the atomic structure of cyclo-P5 assembled on Ag(111) using atomic force microscopy with functionalized tips and density functional theory. Combining force and tunneling spectroscopy, we find that a strong charge transfer induces an inward dipole moment at the cyclo-P5/Ag interface as well as the formation of an interface state. We probe the image potential states by field-effect resonant tunneling and quantify the increase of the local change of work function of 0.46 eV at the cyclo-P5 assembly. Our experimental approach suggest that the cyclo-P5/Ag interface has the characteristic ingredients of a p-type semiconductor-metal Schottky junction with potential applications in field-effect transistors, diodes, or solar cells.

Suggested Citation

  • Outhmane Chahib & Yuling Yin & Jung-Ching Liu & Chao Li & Thilo Glatzel & Feng Ding & Qinghong Yuan & Ernst Meyer & Rémy Pawlak, 2024. "Probing charge redistribution at the interface of self-assembled cyclo-P5 pentamers on Ag(111)," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50862-4
    DOI: 10.1038/s41467-024-50862-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50862-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50862-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaolong Liu & Luqing Wang & Shaowei Li & Matthew S. Rahn & Boris I. Yakobson & Mark C. Hersam, 2019. "Geometric imaging of borophene polymorphs with functionalized probes," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. R. Zhang & J. Waters & A. K. Geim & I. V. Grigorieva, 2017. "Intercalant-independent transition temperature in superconducting black phosphorus," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    3. Jinming Cai & Pascal Ruffieux & Rached Jaafar & Marco Bieri & Thomas Braun & Stephan Blankenburg & Matthias Muoth & Ari P. Seitsonen & Moussa Saleh & Xinliang Feng & Klaus Müllen & Roman Fasel, 2010. "Atomically precise bottom-up fabrication of graphene nanoribbons," Nature, Nature, vol. 466(7305), pages 470-473, July.
    4. Chao Li & Christoph Kaspar & Ping Zhou & Jung-Ching Liu & Outhmane Chahib & Thilo Glatzel & Robert Häner & Ulrich Aschauer & Silvio Decurtins & Shi-Xia Liu & Michael Thoss & Ernst Meyer & Rémy Pawlak, 2023. "Strong signature of electron-vibration coupling in molecules on Ag(111) triggered by tip-gated discharging," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Wei Zhang & Hanna Enriquez & Yongfeng Tong & Andrew J. Mayne & Azzedine Bendounan & Alex Smogunov & Yannick J. Dappe & Abdelkader Kara & Gérald Dujardin & Hamid Oughaddou, 2021. "Flat epitaxial quasi-1D phosphorene chains," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linfei Li & Jeremy F. Schultz & Sayantan Mahapatra & Zhongyi Lu & Xu Zhang & Nan Jiang, 2022. "Chemically identifying single adatoms with single-bond sensitivity during oxidation reactions of borophene," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Austin J. Way & Robert M. Jacobberger & Nathan P. Guisinger & Vivek Saraswat & Xiaoqi Zheng & Anjali Suresh & Jonathan H. Dwyer & Padma Gopalan & Michael S. Arnold, 2022. "Graphene nanoribbons initiated from molecularly derived seeds," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Lu Qiu & Xiuyun Zhang & Xiao Kong & Izaac Mitchell & Tianying Yan & Sung Youb Kim & Boris I. Yakobson & Feng Ding, 2023. "Theory of sigma bond resonance in flat boron materials," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    5. Hiroshi Sakaguchi & Takahiro Kojima & Yingbo Cheng & Shunpei Nobusue & Kazuhiro Fukami, 2024. "Electrochemical on-surface synthesis of a strong electron-donating graphene nanoribbon catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Fouad N. Ajeel & Ali Ben Ahmed, 2023. "Influence of the boron doping and Stone–Wales defects on the thermoelectric performance of graphene nanoribbons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(10), pages 1-10, October.
    7. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    8. Yu Zhou & Xinyu Zhang & Guan Sheng & Shengda Wang & Muqing Chen & Guilin Zhuang & Yihan Zhu & Pingwu Du, 2023. "A metal-free photoactive nitrogen-doped carbon nanosolenoid with broad absorption in visible region for efficient photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Ignacio Piquero-Zulaica & Eduardo Corral-Rascón & Xabier Diaz de Cerio & Alexander Riss & Biao Yang & Aran Garcia-Lekue & Mohammad A. Kher-Elden & Zakaria M. Abd El-Fattah & Shunpei Nobusue & Takahiro, 2024. "Deceptive orbital confinement at edges and pores of carbon-based 1D and 2D nanoarchitectures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Talal Yusaf & Abu Shadate Faisal Mahamude & Kaniz Farhana & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Mohd Kamal Kamarulzaman & Sivarao Subramonian & Steve Hall & Hayder Abed Dh, 2022. "A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications," Sustainability, MDPI, vol. 14(19), pages 1-32, September.
    11. Zhenzhe Zhang & Hanh D. M. Pham & Dmytro F. Perepichka & Rustam Z. Khaliullin, 2024. "Prediction of highly stable 2D carbon allotropes based on azulenoid kekulene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Shuangzan Lu & Deping Guo & Zhengbo Cheng & Yanping Guo & Cong Wang & Jinghao Deng & Yusong Bai & Cheng Tian & Linwei Zhou & Youguo Shi & Jun He & Wei Ji & Chendong Zhang, 2023. "Controllable dimensionality conversion between 1D and 2D CrCl3 magnetic nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. S. E. Ammerman & V. Jelic & Y. Wei & V. N. Breslin & M. Hassan & N. Everett & S. Lee & Q. Sun & C. A. Pignedoli & P. Ruffieux & R. Fasel & T. L. Cocker, 2021. "Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. Zilin Ruan & Baijin Li & Jianchen Lu & Lei Gao & Shijie Sun & Yong Zhang & Jinming Cai, 2023. "Real-space imaging of a phenyl group migration reaction on metal surfaces," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    15. Yang Luo & Alberto Martin-Jimenez & Michele Pisarra & Fernando Martin & Manish Garg & Klaus Kern, 2023. "Imaging and controlling coherent phonon wave packets in single graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Junbo Wang & Kaifeng Niu & Huaming Zhu & Chaojie Xu & Chuan Deng & Wenchao Zhao & Peipei Huang & Haiping Lin & Dengyuan Li & Johanna Rosen & Peinian Liu & Francesco Allegretti & Johannes V. Barth & Bi, 2024. "Universal inter-molecular radical transfer reactions on metal surfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Nan Cao & Biao Yang & Alexander Riss & Johanna Rosen & Jonas Björk & Johannes V. Barth, 2023. "On-surface synthesis of enetriynes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Jinyi Wang & Yihan Zhu & Guilin Zhuang & Yayu Wu & Shengda Wang & Pingsen Huang & Guan Sheng & Muqing Chen & Shangfeng Yang & Thomas Greber & Pingwu Du, 2022. "Synthesis of a magnetic π-extended carbon nanosolenoid with Riemann surfaces," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Deng-Yuan Li & Zheng-Yang Huang & Li-Xia Kang & Bing-Xin Wang & Jian-Hui Fu & Ying Wang & Guang-Yan Xing & Yan Zhao & Xin-Yu Zhang & Pei-Nian Liu, 2024. "Room-temperature selective cyclodehydrogenation on Au(111) via radical addition of open-shell resonance structures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Olabi, A.G. & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Sayed, Enas Taha, 2021. "Application of graphene in energy storage device – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50862-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.