IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45138-w.html
   My bibliography  Save this article

Deceptive orbital confinement at edges and pores of carbon-based 1D and 2D nanoarchitectures

Author

Listed:
  • Ignacio Piquero-Zulaica

    (Technical University of Munich)

  • Eduardo Corral-Rascón

    (Technical University of Munich)

  • Xabier Diaz de Cerio

    (Donostia International Physics Center (DIPC))

  • Alexander Riss

    (Technical University of Munich)

  • Biao Yang

    (Technical University of Munich)

  • Aran Garcia-Lekue

    (Donostia International Physics Center (DIPC)
    Basque Foundation for Science)

  • Mohammad A. Kher-Elden

    (Al-Azhar University)

  • Zakaria M. Abd El-Fattah

    (Al-Azhar University)

  • Shunpei Nobusue

    (Kyoto University)

  • Takahiro Kojima

    (Kyoto University)

  • Knud Seufert

    (Technical University of Munich)

  • Hiroshi Sakaguchi

    (Kyoto University)

  • Willi Auwärter

    (Technical University of Munich)

  • Johannes V. Barth

    (Technical University of Munich)

Abstract

The electronic structure defines the properties of graphene-based nanomaterials. Scanning tunneling microscopy/spectroscopy (STM/STS) experiments on graphene nanoribbons (GNRs), nanographenes, and nanoporous graphene (NPG) often determine an apparent electronic orbital confinement into the edges and nanopores, leading to dubious interpretations such as image potential states or super-atom molecular orbitals. We show that these measurements are subject to a wave function decay into the vacuum that masks the undisturbed electronic orbital shape. We use Au(111)-supported semiconducting gulf-type GNRs and NPGs as model systems fostering frontier orbitals that appear confined along the edges and nanopores in STS measurements. DFT calculations confirm that these states originate from valence and conduction bands. The deceptive electronic orbital confinement observed is caused by a loss of Fourier components, corresponding to states of high momentum. This effect can be generalized to other 1D and 2D carbon-based nanoarchitectures and is important for their use in catalysis and sensing applications.

Suggested Citation

  • Ignacio Piquero-Zulaica & Eduardo Corral-Rascón & Xabier Diaz de Cerio & Alexander Riss & Biao Yang & Aran Garcia-Lekue & Mohammad A. Kher-Elden & Zakaria M. Abd El-Fattah & Shunpei Nobusue & Takahiro, 2024. "Deceptive orbital confinement at edges and pores of carbon-based 1D and 2D nanoarchitectures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45138-w
    DOI: 10.1038/s41467-024-45138-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45138-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45138-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Suqin Cheng & Zhijie Xue & Can Li & Yufeng Liu & Longjun Xiang & Youqi Ke & Kaking Yan & Shiyong Wang & Ping Yu, 2022. "On-surface synthesis of triangulene trimers via dehydration reaction," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Jinming Cai & Pascal Ruffieux & Rached Jaafar & Marco Bieri & Thomas Braun & Stephan Blankenburg & Matthias Muoth & Ari P. Seitsonen & Moussa Saleh & Xinliang Feng & Klaus Müllen & Roman Fasel, 2010. "Atomically precise bottom-up fabrication of graphene nanoribbons," Nature, Nature, vol. 466(7305), pages 470-473, July.
    3. Guillaume Vasseur & Yannick Fagot-Revurat & Muriel Sicot & Bertrand Kierren & Luc Moreau & Daniel Malterre & Luis Cardenas & Gianluca Galeotti & Josh Lipton-Duffin & Federico Rosei & Marco Di Giovanna, 2016. "Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    4. S. E. Ammerman & V. Jelic & Y. Wei & V. N. Breslin & M. Hassan & N. Everett & S. Lee & Q. Sun & C. A. Pignedoli & P. Ruffieux & R. Fasel & T. L. Cocker, 2021. "Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Shaotang Song & Jie Su & Xinnan Peng & Xinbang Wu & Mykola Telychko, 2021. "Recent Advances In Bond-Resolved Scanning Tunneling Microscopy," Surface Review and Letters (SRL), World Scientific Publishing Co. Pte. Ltd., vol. 28(08), pages 1-16, August.
    6. Jingcheng Li & Sofia Sanz & Nestor Merino-Díez & Manuel Vilas-Varela & Aran Garcia-Lekue & Martina Corso & Dimas G. de Oteyza & Thomas Frederiksen & Diego Peña & Jose Ignacio Pascual, 2021. "Topological phase transition in chiral graphene nanoribbons: from edge bands to end states," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Daniel J. Rizzo & Gregory Veber & Ting Cao & Christopher Bronner & Ting Chen & Fangzhou Zhao & Henry Rodriguez & Steven G. Louie & Michael F. Crommie & Felix R. Fischer, 2018. "Topological band engineering of graphene nanoribbons," Nature, Nature, vol. 560(7717), pages 204-208, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingyang Du & Xuelei Su & Yufeng Liu & Yashi Jiang & Can Li & KaKing Yan & Ricardo Ortiz & Thomas Frederiksen & Shiyong Wang & Ping Yu, 2023. "Orbital-symmetry effects on magnetic exchange in open-shell nanographenes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Hiroshi Sakaguchi & Takahiro Kojima & Yingbo Cheng & Shunpei Nobusue & Kazuhiro Fukami, 2024. "Electrochemical on-surface synthesis of a strong electron-donating graphene nanoribbon catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. S. E. Ammerman & V. Jelic & Y. Wei & V. N. Breslin & M. Hassan & N. Everett & S. Lee & Q. Sun & C. A. Pignedoli & P. Ruffieux & R. Fasel & T. L. Cocker, 2021. "Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Deng-Yuan Li & Zheng-Yang Huang & Li-Xia Kang & Bing-Xin Wang & Jian-Hui Fu & Ying Wang & Guang-Yan Xing & Yan Zhao & Xin-Yu Zhang & Pei-Nian Liu, 2024. "Room-temperature selective cyclodehydrogenation on Au(111) via radical addition of open-shell resonance structures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Ondrej Dyck & Jawaher Almutlaq & David Lingerfelt & Jacob L. Swett & Mark P. Oxley & Bevin Huang & Andrew R. Lupini & Dirk Englund & Stephen Jesse, 2023. "Direct imaging of electron density with a scanning transmission electron microscope," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Liangliang Cai & Tianhao Gao & Andrew T. S. Wee, 2024. "Topology selectivity of a conformationally flexible precursor through selenium doping," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Outhmane Chahib & Yuling Yin & Jung-Ching Liu & Chao Li & Thilo Glatzel & Feng Ding & Qinghong Yuan & Ernst Meyer & Rémy Pawlak, 2024. "Probing charge redistribution at the interface of self-assembled cyclo-P5 pentamers on Ag(111)," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Tianyi Hu & Weiliang Zhong & Tingfeng Zhang & Weihua Wang & Z. F. Wang, 2023. "Identifying topological corner states in two-dimensional metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Austin J. Way & Robert M. Jacobberger & Nathan P. Guisinger & Vivek Saraswat & Xiaoqi Zheng & Anjali Suresh & Jonathan H. Dwyer & Padma Gopalan & Michael S. Arnold, 2022. "Graphene nanoribbons initiated from molecularly derived seeds," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    11. Jens Brede & Nestor Merino-Díez & Alejandro Berdonces-Layunta & Sofía Sanz & Amelia Domínguez-Celorrio & Jorge Lobo-Checa & Manuel Vilas-Varela & Diego Peña & Thomas Frederiksen & José I. Pascual & Di, 2023. "Detecting the spin-polarization of edge states in graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Fouad N. Ajeel & Ali Ben Ahmed, 2023. "Influence of the boron doping and Stone–Wales defects on the thermoelectric performance of graphene nanoribbons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(10), pages 1-10, October.
    13. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    14. Yu Zhou & Xinyu Zhang & Guan Sheng & Shengda Wang & Muqing Chen & Guilin Zhuang & Yihan Zhu & Pingwu Du, 2023. "A metal-free photoactive nitrogen-doped carbon nanosolenoid with broad absorption in visible region for efficient photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Zhiwang Zhang & Penglin Gao & Wenjie Liu & Zichong Yue & Ying Cheng & Xiaojun Liu & Johan Christensen, 2022. "Structured sonic tube with carbon nanotube-like topological edge states," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    16. Talal Yusaf & Abu Shadate Faisal Mahamude & Kaniz Farhana & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Mohd Kamal Kamarulzaman & Sivarao Subramonian & Steve Hall & Hayder Abed Dh, 2022. "A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications," Sustainability, MDPI, vol. 14(19), pages 1-32, September.
    17. Zhenzhe Zhang & Hanh D. M. Pham & Dmytro F. Perepichka & Rustam Z. Khaliullin, 2024. "Prediction of highly stable 2D carbon allotropes based on azulenoid kekulene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    19. Xufan Li & Samuel Wyss & Emanuil Yanev & Qing-Jie Li & Shuang Wu & Yongwen Sun & Raymond R. Unocic & Joseph Stage & Matthew Strasbourg & Lucas M. Sassi & Yingxin Zhu & Ju Li & Yang Yang & James Hone &, 2024. "Width-dependent continuous growth of atomically thin quantum nanoribbons from nanoalloy seeds in chalcogen vapor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Srilok Srinivasan & Rohit Batra & Duan Luo & Troy Loeffler & Sukriti Manna & Henry Chan & Liuxiang Yang & Wenge Yang & Jianguo Wen & Pierre Darancet & Subramanian K.R.S. Sankaranarayanan, 2022. "Machine learning the metastable phase diagram of covalently bonded carbon," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45138-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.