IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36828-y.html
   My bibliography  Save this article

On-surface synthesis of enetriynes

Author

Listed:
  • Nan Cao

    (Technical University of Munich
    Linköping University)

  • Biao Yang

    (Technical University of Munich)

  • Alexander Riss

    (Technical University of Munich)

  • Johanna Rosen

    (Linköping University)

  • Jonas Björk

    (Linköping University)

  • Johannes V. Barth

    (Technical University of Munich)

Abstract

Belonging to the enyne family, enetriynes comprise a distinct electron-rich all-carbon bonding scheme. However, the lack of convenient synthesis protocols limits the associated application potential within, e.g., biochemistry and materials science. Herein we introduce a pathway for highly selective enetriyne formation via tetramerization of terminal alkynes on a Ag(100) surface. Taking advantage of a directing hydroxyl group, we steer molecular assembly and reaction processes on square lattices. Induced by O2 exposure the terminal alkyne moieties deprotonate and organometallic bis-acetylide dimer arrays evolve. Upon subsequent thermal annealing tetrameric enetriyne-bridged compounds are generated in high yield, readily self-assembling into regular networks. We combine high-resolution scanning probe microscopy, X-ray photoelectron spectroscopy and density functional theory calculations to examine the structural features, bonding characteristics and the underlying reaction mechanism. Our study introduces an integrated strategy for the precise fabrication of functional enetriyne species, thus providing access to a distinct class of highly conjugated π-system compounds.

Suggested Citation

  • Nan Cao & Biao Yang & Alexander Riss & Johanna Rosen & Jonas Björk & Johannes V. Barth, 2023. "On-surface synthesis of enetriynes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36828-y
    DOI: 10.1038/s41467-023-36828-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36828-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36828-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinming Cai & Pascal Ruffieux & Rached Jaafar & Marco Bieri & Thomas Braun & Stephan Blankenburg & Matthias Muoth & Ari P. Seitsonen & Moussa Saleh & Xinliang Feng & Klaus Müllen & Roman Fasel, 2010. "Atomically precise bottom-up fabrication of graphene nanoribbons," Nature, Nature, vol. 466(7305), pages 470-473, July.
    2. Yi-Qi Zhang & Nenad Kepčija & Martin Kleinschrodt & Katharina Diller & Sybille Fischer & Anthoula C. Papageorgiou & Francesco Allegretti & Jonas Björk & Svetlana Klyatskaya & Florian Klappenberger & M, 2012. "Homo-coupling of terminal alkynes on a noble metal surface," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    3. José I. Urgel & Shantanu Mishra & Hironobu Hayashi & Jan Wilhelm & Carlo A. Pignedoli & Marco Di Giovannantonio & Roland Widmer & Masataka Yamashita & Nao Hieda & Pascal Ruffieux & Hiroko Yamada & Rom, 2019. "On-surface light-induced generation of higher acenes and elucidation of their open-shell character," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junbo Wang & Kaifeng Niu & Huaming Zhu & Chaojie Xu & Chuan Deng & Wenchao Zhao & Peipei Huang & Haiping Lin & Dengyuan Li & Johanna Rosen & Peinian Liu & Francesco Allegretti & Johannes V. Barth & Bi, 2024. "Universal inter-molecular radical transfer reactions on metal surfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zilin Ruan & Baijin Li & Jianchen Lu & Lei Gao & Shijie Sun & Yong Zhang & Jinming Cai, 2023. "Real-space imaging of a phenyl group migration reaction on metal surfaces," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    2. Junbo Wang & Kaifeng Niu & Huaming Zhu & Chaojie Xu & Chuan Deng & Wenchao Zhao & Peipei Huang & Haiping Lin & Dengyuan Li & Johanna Rosen & Peinian Liu & Francesco Allegretti & Johannes V. Barth & Bi, 2024. "Universal inter-molecular radical transfer reactions on metal surfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Lingbo Xing & Jie Li & Yuchen Bai & Yuxuan Lin & Lianghong Xiao & Changlin Li & Dahui Zhao & Yongfeng Wang & Qiwei Chen & Jing Liu & Kai Wu, 2024. "Surface-confined alternating copolymerization with molecular precision by stoichiometric control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Preeta Pratakshya & Chengyi Xu & David J. Dibble & Aliya Mukazhanova & Panyiming Liu & Anthony M. Burke & Reina Kurakake & Robert Lopez & Philip R. Dennison & Sahar Sharifzadeh & Alon A. Gorodetsky, 2023. "Octopus-inspired deception and signaling systems from an exceptionally-stable acene variant," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Austin J. Way & Robert M. Jacobberger & Nathan P. Guisinger & Vivek Saraswat & Xiaoqi Zheng & Anjali Suresh & Jonathan H. Dwyer & Padma Gopalan & Michael S. Arnold, 2022. "Graphene nanoribbons initiated from molecularly derived seeds," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    7. Hiroshi Sakaguchi & Takahiro Kojima & Yingbo Cheng & Shunpei Nobusue & Kazuhiro Fukami, 2024. "Electrochemical on-surface synthesis of a strong electron-donating graphene nanoribbon catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    9. Yu Zhou & Xinyu Zhang & Guan Sheng & Shengda Wang & Muqing Chen & Guilin Zhuang & Yihan Zhu & Pingwu Du, 2023. "A metal-free photoactive nitrogen-doped carbon nanosolenoid with broad absorption in visible region for efficient photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Olabi, A.G. & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Sayed, Enas Taha, 2021. "Application of graphene in energy storage device – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Marco Di Giovannantonio & Zijie Qiu & Carlo A. Pignedoli & Sobi Asako & Pascal Ruffieux & Klaus Müllen & Akimitsu Narita & Roman Fasel, 2024. "On-surface cyclization of vinyl groups on poly-para-phenylene involving an unusual pentagon to hexagon transformation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Outhmane Chahib & Yuling Yin & Jung-Ching Liu & Chao Li & Thilo Glatzel & Feng Ding & Qinghong Yuan & Ernst Meyer & Rémy Pawlak, 2024. "Probing charge redistribution at the interface of self-assembled cyclo-P5 pentamers on Ag(111)," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Fouad N. Ajeel & Ali Ben Ahmed, 2023. "Influence of the boron doping and Stone–Wales defects on the thermoelectric performance of graphene nanoribbons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(10), pages 1-10, October.
    14. Ignacio Piquero-Zulaica & Eduardo Corral-Rascón & Xabier Diaz de Cerio & Alexander Riss & Biao Yang & Aran Garcia-Lekue & Mohammad A. Kher-Elden & Zakaria M. Abd El-Fattah & Shunpei Nobusue & Takahiro, 2024. "Deceptive orbital confinement at edges and pores of carbon-based 1D and 2D nanoarchitectures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Talal Yusaf & Abu Shadate Faisal Mahamude & Kaniz Farhana & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Mohd Kamal Kamarulzaman & Sivarao Subramonian & Steve Hall & Hayder Abed Dh, 2022. "A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications," Sustainability, MDPI, vol. 14(19), pages 1-32, September.
    16. Zhenzhe Zhang & Hanh D. M. Pham & Dmytro F. Perepichka & Rustam Z. Khaliullin, 2024. "Prediction of highly stable 2D carbon allotropes based on azulenoid kekulene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. S. E. Ammerman & V. Jelic & Y. Wei & V. N. Breslin & M. Hassan & N. Everett & S. Lee & Q. Sun & C. A. Pignedoli & P. Ruffieux & R. Fasel & T. L. Cocker, 2021. "Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    18. Yang Luo & Alberto Martin-Jimenez & Michele Pisarra & Fernando Martin & Manish Garg & Klaus Kern, 2023. "Imaging and controlling coherent phonon wave packets in single graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Jinyi Wang & Yihan Zhu & Guilin Zhuang & Yayu Wu & Shengda Wang & Pingsen Huang & Guan Sheng & Muqing Chen & Shangfeng Yang & Thomas Greber & Pingwu Du, 2022. "Synthesis of a magnetic π-extended carbon nanosolenoid with Riemann surfaces," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36828-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.