IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09686-w.html
   My bibliography  Save this article

Geometric imaging of borophene polymorphs with functionalized probes

Author

Listed:
  • Xiaolong Liu

    (Northwestern University)

  • Luqing Wang

    (Rice University)

  • Shaowei Li

    (Northwestern University)

  • Matthew S. Rahn

    (Northwestern University)

  • Boris I. Yakobson

    (Rice University
    Rice University)

  • Mark C. Hersam

    (Northwestern University
    Northwestern University
    Northwestern University
    Northwestern University)

Abstract

A common characteristic of borophene polymorphs is the presence of hollow hexagons (HHs) in an otherwise triangular lattice. The vast number of possible HH arrangements underlies the polymorphic nature of borophene, and necessitates direct HH imaging to definitively identify its atomic structure. While borophene has been imaged with scanning tunneling microscopy using conventional metal probes, the convolution of topographic and electronic features hinders unambiguous identification of the atomic lattice. Here, we overcome these limitations by employing CO-functionalized atomic force microscopy to visualize structures corresponding to boron-boron covalent bonds. Additionally, we show that CO-functionalized scanning tunneling microscopy is an equivalent and more accessible technique for HH imaging, confirming the v1/5 and v1/6 borophene models as unifying structures for all observed phases. Using this methodology, a borophene phase diagram is assembled, including a transition from rotationally commensurate to incommensurate phases at high growth temperatures, thus corroborating the chemically discrete nature of borophene.

Suggested Citation

  • Xiaolong Liu & Luqing Wang & Shaowei Li & Matthew S. Rahn & Boris I. Yakobson & Mark C. Hersam, 2019. "Geometric imaging of borophene polymorphs with functionalized probes," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09686-w
    DOI: 10.1038/s41467-019-09686-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09686-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09686-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linfei Li & Jeremy F. Schultz & Sayantan Mahapatra & Zhongyi Lu & Xu Zhang & Nan Jiang, 2022. "Chemically identifying single adatoms with single-bond sensitivity during oxidation reactions of borophene," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Outhmane Chahib & Yuling Yin & Jung-Ching Liu & Chao Li & Thilo Glatzel & Feng Ding & Qinghong Yuan & Ernst Meyer & Rémy Pawlak, 2024. "Probing charge redistribution at the interface of self-assembled cyclo-P5 pentamers on Ag(111)," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Lu Qiu & Xiuyun Zhang & Xiao Kong & Izaac Mitchell & Tianying Yan & Sung Youb Kim & Boris I. Yakobson & Feng Ding, 2023. "Theory of sigma bond resonance in flat boron materials," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09686-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.