IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19989-y.html
   My bibliography  Save this article

Using metacommunity ecology to understand environmental metabolomes

Author

Listed:
  • Robert E. Danczak

    (Pacific Northwest National Laboratory)

  • Rosalie K. Chu

    (Environmental Molecular Sciences Laboratory)

  • Sarah J. Fansler

    (Pacific Northwest National Laboratory)

  • Amy E. Goldman

    (Pacific Northwest National Laboratory)

  • Emily B. Graham

    (Pacific Northwest National Laboratory)

  • Malak M. Tfaily

    (Environmental Molecular Sciences Laboratory
    University of Arizona)

  • Jason Toyoda

    (Environmental Molecular Sciences Laboratory)

  • James C. Stegen

    (Pacific Northwest National Laboratory)

Abstract

Environmental metabolomes are fundamentally coupled to microbially-linked biogeochemical processes within ecosystems. However, significant gaps exist in our understanding of their spatiotemporal organization, limiting our ability to uncover transferrable principles and predict ecosystem function. We propose that a theoretical paradigm, which integrates concepts from metacommunity ecology, is necessary to reveal underlying mechanisms governing metabolomes. We call this synthesis between ecology and metabolomics ‘meta-metabolome ecology’ and demonstrate its utility using a mass spectrometry dataset. We developed three relational metabolite dendrograms using molecular properties and putative biochemical transformations and performed ecological null modeling. Based upon null modeling results, we show that stochastic processes drove molecular properties while biochemical transformations were structured deterministically. We further suggest that potentially biochemically active metabolites were more deterministically assembled than less active metabolites. Understanding variation in the influences of stochasticity and determinism provides a way to focus attention on which meta-metabolomes and which parts of meta-metabolomes are most likely to be important to consider in mechanistic models. We propose that this paradigm will allow researchers to study the connections between ecological systems and their molecular processes in previously inaccessible detail.

Suggested Citation

  • Robert E. Danczak & Rosalie K. Chu & Sarah J. Fansler & Amy E. Goldman & Emily B. Graham & Malak M. Tfaily & Jason Toyoda & James C. Stegen, 2020. "Using metacommunity ecology to understand environmental metabolomes," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19989-y
    DOI: 10.1038/s41467-020-19989-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19989-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19989-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Ma & Yueyue Li & Wen Song & Jiayin Zhou & Xia Liu & Mengqi Wang & Xiaofan Gong & Linlin Wang & Qichao Tu, 2024. "Disentangling drivers of mudflat intertidal DOM chemodiversity using ecological models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Ang Hu & Mira Choi & Andrew J. Tanentzap & Jinfu Liu & Kyoung-Soon Jang & Jay T. Lennon & Yongqin Liu & Janne Soininen & Xiancai Lu & Yunlin Zhang & Ji Shen & Jianjun Wang, 2022. "Ecological networks of dissolved organic matter and microorganisms under global change," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Núria Catalán & Carina Rofner & Charles Verpoorter & María Teresa Pérez & Thorsten Dittmar & Lars Tranvik & Ruben Sommaruga & Hannes Peter, 2024. "Treeline displacement may affect lake dissolved organic matter processing at high latitudes and altitudes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19989-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.