IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4804.html
   My bibliography  Save this article

Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology

Author

Listed:
  • Anne M. Kellerman

    (Uppsala University)

  • Thorsten Dittmar

    (Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg)

  • Dolly N. Kothawala

    (Uppsala University)

  • Lars J. Tranvik

    (Uppsala University)

Abstract

Despite the small continental coverage of lakes, they are hotspots of carbon cycling, largely due to the processing of terrestrially derived dissolved organic matter (DOM). As DOM is an amalgam of heterogeneous compounds comprising gradients of microbial and physicochemical reactivity, the factors influencing DOM processing at the molecular level and the resulting patterns in DOM composition are not well understood. Here we show, using ultrahigh-resolution mass spectrometry to unambiguously identify 4,032 molecular formulae in 120 lakes across Sweden, that the molecular composition of DOM is shaped by precipitation, water residence time and temperature. Terrestrially derived DOM is selectively lost as residence time increases, with warmer temperatures enhancing the production of nitrogen-containing compounds. Using biodiversity concepts, we show that the molecular diversity of DOM, or chemodiversity, increases with DOM and nutrient concentrations. The observed molecular-level patterns indicate that terrestrially derived DOM will become more prevalent in lakes as climate gets wetter.

Suggested Citation

  • Anne M. Kellerman & Thorsten Dittmar & Dolly N. Kothawala & Lars J. Tranvik, 2014. "Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4804
    DOI: 10.1038/ncomms4804
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4804
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4804?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erika C. Freeman & Erik J. S. Emilson & Thorsten Dittmar & Lucas P. P. Braga & Caroline E. Emilson & Tobias Goldhammer & Christine Martineau & Gabriel Singer & Andrew J. Tanentzap, 2024. "Universal microbial reworking of dissolved organic matter along environmental gradients," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Jie Hu & Luyao Kang & Ziliang Li & Xuehui Feng & Caifan Liang & Zan Wu & Wei Zhou & Xuning Liu & Yuanhe Yang & Leiyi Chen, 2023. "Photo-produced aromatic compounds stimulate microbial degradation of dissolved organic carbon in thermokarst lakes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Kai Ma & Yueyue Li & Wen Song & Jiayin Zhou & Xia Liu & Mengqi Wang & Xiaofan Gong & Linlin Wang & Qichao Tu, 2024. "Disentangling drivers of mudflat intertidal DOM chemodiversity using ecological models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Eleanor A. Sheridan & Jérémy A. Fonvielle & Samuel Cottingham & Yi Zhang & Thorsten Dittmar & David C. Aldridge & Andrew J. Tanentzap, 2022. "Plastic pollution fosters more microbial growth in lakes than natural organic matter," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Núria Catalán & Carina Rofner & Charles Verpoorter & María Teresa Pérez & Thorsten Dittmar & Lars Tranvik & Ruben Sommaruga & Hannes Peter, 2024. "Treeline displacement may affect lake dissolved organic matter processing at high latitudes and altitudes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.