IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50827-7.html
   My bibliography  Save this article

Structure elucidation of a human melanocortin-4 receptor specific orthosteric nanobody agonist

Author

Listed:
  • Thomas Fontaine

    (Confo Therapeutics N.V)

  • Andreas Busch

    (Confo Therapeutics N.V)

  • Toon Laeremans

    (Confo Therapeutics N.V)

  • Stéphane De Cesco

    (Confo Therapeutics N.V)

  • Yi-Lynn Liang

    (Confo Therapeutics N.V)

  • Veli-Pekka Jaakola

    (Confo Therapeutics N.V)

  • Zara Sands

    (Confo Therapeutics N.V)

  • Sarah Triest

    (Confo Therapeutics N.V)

  • Simonas Masiulis

    (Materials and Structural Analysis, Thermo Fisher Scientific)

  • Lies Dekeyzer

    (Confo Therapeutics N.V)

  • Noor Samyn

    (Confo Therapeutics N.V)

  • Nicolas Loeys

    (Confo Therapeutics N.V)

  • Lisa Perneel

    (Confo Therapeutics N.V)

  • Melanie Debaere

    (Confo Therapeutics N.V)

  • Murielle Martini

    (Confo Therapeutics N.V)

  • Charlotte Vantieghem

    (Confo Therapeutics N.V)

  • Richa Virmani

    (Confo Therapeutics N.V)

  • Kamila Skieterska

    (Confo Therapeutics N.V)

  • Stephanie Staelens

    (Confo Therapeutics N.V)

  • Rosa Barroco

    (Confo Therapeutics N.V)

  • Maarten Van Roy

    (Confo Therapeutics N.V)

  • Christel Menet

    (Confo Therapeutics N.V)

Abstract

The melanocortin receptor 4 (MC4R) belongs to the melanocortin receptor family of G-protein coupled receptors and is a key switch in the leptin-melanocortin molecular axis that controls hunger and satiety. Brain-produced hormones such as α-melanocyte-stimulating hormone (agonist) and agouti-related peptide (inverse agonist) regulate the molecular communication of the MC4R axis but are promiscuous for melanocortin receptor subtypes and induce a wide array of biological effects. Here, we use a chimeric construct of conformation-selective, nanobody-based binding domain (a ConfoBody Cb80) and active state-stabilized MC4R-β2AR hybrid for efficient de novo discovery of a sequence diverse panel of MC4R-specific, potent and full agonistic nanobodies. We solve the active state MC4R structure in complex with the full agonistic nanobody pN162 at 3.4 Å resolution. The structure shows a distinct interaction with pN162 binding deeply in the orthosteric pocket. MC4R peptide agonists, such as the marketed setmelanotide, lack receptor selectivity and show off-target effects. In contrast, the agonistic nanobody is highly specific and hence can be a more suitable agent for anti-obesity therapeutic intervention via MC4R.

Suggested Citation

  • Thomas Fontaine & Andreas Busch & Toon Laeremans & Stéphane De Cesco & Yi-Lynn Liang & Veli-Pekka Jaakola & Zara Sands & Sarah Triest & Simonas Masiulis & Lies Dekeyzer & Noor Samyn & Nicolas Loeys & , 2024. "Structure elucidation of a human melanocortin-4 receptor specific orthosteric nanobody agonist," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50827-7
    DOI: 10.1038/s41467-024-50827-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50827-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50827-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Antoine Koehl & Hongli Hu & Dan Feng & Bingfa Sun & Yan Zhang & Michael J. Robertson & Matthew Chu & Tong Sun Kobilka & Toon Laeremans & Jan Steyaert & Jeffrey Tarrasch & Somnath Dutta & Rasmus Fonsec, 2019. "Author Correction: Structural insights into the activation of metabotropic glutamate receptors," Nature, Nature, vol. 567(7747), pages 10-10, March.
    2. Antoine Koehl & Hongli Hu & Dan Feng & Bingfa Sun & Yan Zhang & Michael J. Robertson & Matthew Chu & Tong Sun Kobilka & Toon Laeremans & Jan Steyaert & Jeffrey Tarrasch & Somnath Dutta & Rasmus Fonsec, 2019. "Structural insights into the activation of metabotropic glutamate receptors," Nature, Nature, vol. 566(7742), pages 79-84, February.
    3. Andrew C. Kruse & Aaron M. Ring & Aashish Manglik & Jianxin Hu & Kelly Hu & Katrin Eitel & Harald Hübner & Els Pardon & Celine Valant & Patrick M. Sexton & Arthur Christopoulos & Christian C. Felder &, 2013. "Activation and allosteric modulation of a muscarinic acetylcholine receptor," Nature, Nature, vol. 504(7478), pages 101-106, December.
    4. Masoud Ghamari-Langroudi & Gregory J. Digby & Julien A. Sebag & Glenn L. Millhauser & Rafael Palomino & Robert Matthews & Taneisha Gillyard & Brandon L. Panaro & Iain R. Tough & Helen M. Cox & Jerod S, 2015. "G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons," Nature, Nature, vol. 520(7545), pages 94-98, April.
    5. Chuan Hong & Noel J. Byrne & Beata Zamlynny & Srivanya Tummala & Li Xiao & Jennifer M. Shipman & Andrea T. Partridge & Christina Minnick & Michael J. Breslin & Michael T. Rudd & Shawn J. Stachel & Van, 2021. "Structures of active-state orexin receptor 2 rationalize peptide and small-molecule agonist recognition and receptor activation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shivani Sachdev & Brendan A. Creemer & Thomas J. Gardella & Ross W. Cheloha, 2024. "Highly biased agonism for GPCR ligands via nanobody tethering," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Weizhu Huang & Nan Jin & Jia Guo & Cangsong Shen & Chanjuan Xu & Kun Xi & Léo Bonhomme & Robert B. Quast & Dan-Dan Shen & Jiao Qin & Yi-Ru Liu & Yuxuan Song & Yang Gao & Emmanuel Margeat & Philippe Ro, 2024. "Structural basis of orientated asymmetry in a mGlu heterodimer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Yosuke Toyoda & Angqi Zhu & Fang Kong & Sisi Shan & Jiawei Zhao & Nan Wang & Xiaoou Sun & Linqi Zhang & Chuangye Yan & Brian K. Kobilka & Xiangyu Liu, 2023. "Structural basis of α1A-adrenergic receptor activation and recognition by an extracellular nanobody," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Kaihua Zhang & Hao Wu & Nicholas Hoppe & Aashish Manglik & Yifan Cheng, 2022. "Fusion protein strategies for cryo-EM study of G protein-coupled receptors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Janik B. Hedderich & Margherita Persechino & Katharina Becker & Franziska M. Heydenreich & Torben Gutermuth & Michel Bouvier & Moritz Bünemann & Peter Kolb, 2022. "The pocketome of G-protein-coupled receptors reveals previously untargeted allosteric sites," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Yaejin Yun & Hyeongseop Jeong & Thibaut Laboute & Kirill A. Martemyanov & Hyung Ho Lee, 2024. "Cryo-EM structure of human class C orphan GPCR GPR179 involved in visual processing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Pengfei Yan & Xi Lin & Lijie Wu & Lu Xu & Fei Li & Junlin Liu & Fei Xu, 2024. "The binding mechanism of an anti-multiple myeloma antibody to the human GPRC5D homodimer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Chris Habrian & Naomi Latorraca & Zhu Fu & Ehud Y. Isacoff, 2023. "Homo- and hetero-dimeric subunit interactions set affinity and efficacy in metabotropic glutamate receptors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Alexa Strauss & Alberto J. Gonzalez-Hernandez & Joon Lee & Nohely Abreu & Purushotham Selvakumar & Leslie Salas-Estrada & Melanie Kristt & Anisul Arefin & Kevin Huynh & Dagan C. Marx & Kristen Gillila, 2024. "Structural basis of positive allosteric modulation of metabotropic glutamate receptor activation and internalization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Michael R. Schamber & Reza Vafabakhsh, 2022. "Mechanism of sensitivity modulation in the calcium-sensing receptor via electrostatic tuning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Xiangyu Ma & Li-Nan Chen & Menghui Liao & Liyan Zhang & Kun Xi & Jiamin Guo & Cangsong Shen & Dan-Dan Shen & Pengjun Cai & Qingya Shen & Jieyu Qi & Huibing Zhang & Shao-Kun Zang & Ying-Jun Dong & Luwe, 2024. "Molecular insights into the activation mechanism of GPR156 in maintaining auditory function," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Kento Ojima & Wataru Kakegawa & Tokiwa Yamasaki & Yuta Miura & Masayuki Itoh & Yukiko Michibata & Ryou Kubota & Tomohiro Doura & Eriko Miura & Hiroshi Nonaka & Seiya Mizuno & Satoru Takahashi & Michis, 2022. "Coordination chemogenetics for activation of GPCR-type glutamate receptors in brain tissue," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Jun Yu & Amit Kumar & Xuefeng Zhang & Charlotte Martin & Kevin Van holsbeeck & Pierre Raia & Antoine Koehl & Toon Laeremans & Jan Steyaert & Aashish Manglik & Steven Ballet & Andreas Boland & Miriam S, 2024. "Structural basis of μ-opioid receptor targeting by a nanobody antagonist," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Mingyu Li & Xiaobing Lan & Xinchao Shi & Chunhao Zhu & Xun Lu & Jun Pu & Shaoyong Lu & Jian Zhang, 2024. "Delineating the stepwise millisecond allosteric activation mechanism of the class C GPCR dimer mGlu5," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Eunyoung Jeong & Yoojoong Kim & Jihong Jeong & Yunje Cho, 2021. "Structure of the class C orphan GPCR GPR158 in complex with RGS7-Gβ5," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    16. Manish K. Yadav & Parishmita Sarma & Jagannath Maharana & Manisankar Ganguly & Sudha Mishra & Nashrah Zaidi & Annu Dalal & Vinay Singh & Sayantan Saha & Gargi Mahajan & Saloni Sharma & Mohamed Chami &, 2024. "Structure-guided engineering of biased-agonism in the human niacin receptor via single amino acid substitution," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Yang Yang & Hye Jin Kang & Ruogu Gao & Jingjing Wang & Gye Won Han & Jeffrey F. DiBerto & Lijie Wu & Jiahui Tong & Lu Qu & Yiran Wu & Ryan Pileski & Xuemei Li & Xuejun Cai Zhang & Suwen Zhao & Terry K, 2023. "Structural insights into the human niacin receptor HCA2-Gi signalling complex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Roman R. Schlimgen & Francis C. Peterson & Raimond Heukers & Martine J. Smit & John D. McCorvy & Brian F. Volkman, 2024. "Structural basis for selectivity and antagonism in extracellular GPCR-nanobodies," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Aika Iwama & Ryoji Kise & Hiroaki Akasaka & Fumiya K. Sano & Hidetaka S. Oshima & Asuka Inoue & Wataru Shihoya & Osamu Nureki, 2024. "Structure and dynamics of the pyroglutamylated RF-amide peptide QRFP receptor GPR103," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Noriyuki Uchida & Ai Kohata & Kou Okuro & Annalisa Cardellini & Chiara Lionello & Eric A. Zizzi & Marco A. Deriu & Giovanni M. Pavan & Michio Tomishige & Takaaki Hikima & Takuzo Aida, 2022. "Reconstitution of microtubule into GTP-responsive nanocapsules," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50827-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.