IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50726-x.html
   My bibliography  Save this article

Genome-wide discovery for biomarkers using quantile regression at biobank scale

Author

Listed:
  • Chen Wang

    (Columbia University
    Columbia University)

  • Tianying Wang

    (Colorado State University)

  • Krzysztof Kiryluk

    (Columbia University)

  • Ying Wei

    (Columbia University)

  • Hugues Aschard

    (Université Paris Cité)

  • Iuliana Ionita-Laza

    (Columbia University
    Lund University)

Abstract

Genome-wide association studies (GWAS) for biomarkers important for clinical phenotypes can lead to clinically relevant discoveries. Conventional GWAS for quantitative traits are based on simplified regression models modeling the conditional mean of a phenotype as a linear function of genotype. We draw attention here to an alternative, lesser known approach, namely quantile regression that naturally extends linear regression to the analysis of the entire conditional distribution of a phenotype of interest. Quantile regression can be applied efficiently at biobank scale, while having some unique advantages such as (1) identifying variants with heterogeneous effects across quantiles of the phenotype distribution; (2) accommodating a wide range of phenotype distributions including non-normal distributions, with invariance of results to trait transformations; and (3) providing more detailed information about genotype-phenotype associations even for those associations identified by conventional GWAS. We show in simulations that quantile regression is powerful across both homogeneous and various heterogeneous models. Applications to 39 quantitative traits in the UK Biobank demonstrate that quantile regression can be a helpful complement to linear regression in GWAS and can identify variants with larger effects on high-risk subgroups of individuals but with lower or no contribution overall.

Suggested Citation

  • Chen Wang & Tianying Wang & Krzysztof Kiryluk & Ying Wei & Hugues Aschard & Iuliana Ionita-Laza, 2024. "Genome-wide discovery for biomarkers using quantile regression at biobank scale," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50726-x
    DOI: 10.1038/s41467-024-50726-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50726-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50726-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    2. Jie Huang & Jennifer E. Huffman & Yunfeng Huang & Ítalo Valle & Themistocles L. Assimes & Sridharan Raghavan & Benjamin F. Voight & Chang Liu & Albert-László Barabási & Rose D. L. Huang & Qin Hui & Xu, 2022. "Genomics and phenomics of body mass index reveals a complex disease network," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Moysés Nascimento & Ana Carolina Campana Nascimento & Fabyano Fonseca e Silva & Leiri Daiane Barili & Naine Martins do Vale & José Eustáquio Carneiro & Cosme Damião Cruz & Pedro Crescêncio Souza Carne, 2018. "Quantile regression for genome-wide association study of flowering time-related traits in common bean," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-14, January.
    4. Yaowu Liu & Jun Xie, 2020. "Cauchy Combination Test: A Powerful Test With Analytic p-Value Calculation Under Arbitrary Dependency Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 393-402, January.
    5. Genevieve L. Wojcik & Mariaelisa Graff & Katherine K. Nishimura & Ran Tao & Jeffrey Haessler & Christopher R. Gignoux & Heather M. Highland & Yesha M. Patel & Elena P. Sorokin & Christy L. Avery & Gil, 2019. "Genetic analyses of diverse populations improves discovery for complex traits," Nature, Nature, vol. 570(7762), pages 514-518, June.
    6. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    7. Guillaume Paré & Nancy R Cook & Paul M Ridker & Daniel I Chasman, 2010. "On the Use of Variance per Genotype as a Tool to Identify Quantitative Trait Interaction Effects: A Report from the Women's Genome Health Study," PLOS Genetics, Public Library of Science, vol. 6(6), pages 1-10, June.
    8. Jian Yang & Ruth J. F. Loos & Joseph E. Powell & Sarah E. Medland & Elizabeth K. Speliotes & Daniel I. Chasman & Lynda M. Rose & Gudmar Thorleifsson & Valgerdur Steinthorsdottir & Reedik Mägi & Lindsa, 2012. "FTO genotype is associated with phenotypic variability of body mass index," Nature, Nature, vol. 490(7419), pages 267-272, October.
    9. Kenneth E. Westerman & Timothy D. Majarian & Franco Giulianini & Dong-Keun Jang & Jenkai Miao & Jose C. Florez & Han Chen & Daniel I. Chasman & Miriam S. Udler & Alisa K. Manning & Joanne B. Cole, 2022. "Variance-quantitative trait loci enable systematic discovery of gene-environment interactions for cardiometabolic serum biomarkers," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert F. Hillary & Danni A. Gadd & Zhana Kuncheva & Tasos Mangelis & Tinchi Lin & Kyle Ferber & Helen McLaughlin & Heiko Runz & Riccardo E. Marioni & Christopher N. Foley & Benjamin B. Sun, 2024. "Systematic discovery of gene-environment interactions underlying the human plasma proteome in UK Biobank," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Kathryn E. Kemper & Julia Sidorenko & Huanwei Wang & Ben J. Hayes & Naomi R. Wray & Loic Yengo & Matthew C. Keller & Michael Goddard & Peter M. Visscher, 2024. "Genetic influence on within-person longitudinal change in anthropometric traits in the UK Biobank," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Kenneth E. Westerman & Timothy D. Majarian & Franco Giulianini & Dong-Keun Jang & Jenkai Miao & Jose C. Florez & Han Chen & Daniel I. Chasman & Miriam S. Udler & Alisa K. Manning & Joanne B. Cole, 2022. "Variance-quantitative trait loci enable systematic discovery of gene-environment interactions for cardiometabolic serum biomarkers," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. James P. Pirruccello & Paolo Achille & Seung Hoan Choi & Joel T. Rämö & Shaan Khurshid & Mahan Nekoui & Sean J. Jurgens & Victor Nauffal & Shinwan Kany & Kenney Ng & Samuel F. Friedman & Puneet Batra , 2024. "Deep learning of left atrial structure and function provides link to atrial fibrillation risk," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Isabelle Austin-Zimmerman & Daniel F. Levey & Olga Giannakopoulou & Joseph D. Deak & Marco Galimberti & Keyrun Adhikari & Hang Zhou & Spiros Denaxas & Haritz Irizar & Karoline Kuchenbaecker & Andrew M, 2023. "Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Peter Zhukovsky & Earvin S. Tio & Gillian Coughlan & David A. Bennett & Yanling Wang & Timothy J. Hohman & Diego A. Pizzagalli & Benoit H. Mulsant & Aristotle N. Voineskos & Daniel Felsky, 2024. "Genetic influences on brain and cognitive health and their interactions with cardiovascular conditions and depression," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Dmitrii Usoltsev & Nikita Kolosov & Oxana Rotar & Alexander Loboda & Maria Boyarinova & Ekaterina Moguchaya & Ekaterina Kolesova & Anastasia Erina & Kristina Tolkunova & Valeriia Rezapova & Ivan Molot, 2024. "Complex trait susceptibilities and population diversity in a sample of 4,145 Russians," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Alesha A. Hatton & Fei-Fei Cheng & Tian Lin & Ren-Juan Shen & Jie Chen & Zhili Zheng & Jia Qu & Fan Lyu & Sarah E. Harris & Simon R. Cox & Zi-Bing Jin & Nicholas G. Martin & Dongsheng Fan & Grant W. M, 2024. "Genetic control of DNA methylation is largely shared across European and East Asian populations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. William R. Reay & Michael P. Geaghan & Murray J. Cairns, 2022. "The genetic architecture of pneumonia susceptibility implicates mucin biology and a relationship with psychiatric illness," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Jiacheng Miao & Hanmin Guo & Gefei Song & Zijie Zhao & Lin Hou & Qiongshi Lu, 2023. "Quantifying portable genetic effects and improving cross-ancestry genetic prediction with GWAS summary statistics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Benjamin M. Jacobs & Daniel Stow & Sam Hodgson & Julia Zöllner & Miriam Samuel & Stavroula Kanoni & Saeed Bidi & Klaudia Walter & Claudia Langenberg & Ruth Dobson & Sarah Finer & Caroline Morton & Mon, 2024. "Genetic architecture of routinely acquired blood tests in a British South Asian cohort," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Meghana Pagadala & Timothy J. Sears & Victoria H. Wu & Eva Pérez-Guijarro & Hyo Kim & Andrea Castro & James V. Talwar & Cristian Gonzalez-Colin & Steven Cao & Benjamin J. Schmiedel & Shervin Goudarzi , 2023. "Germline modifiers of the tumor immune microenvironment implicate drivers of cancer risk and immunotherapy response," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    13. Xinyuan Zhang & Anastasia M. Lucas & Yogasudha Veturi & Theodore G. Drivas & William P. Bone & Anurag Verma & Wendy K. Chung & David Crosslin & Joshua C. Denny & Scott Hebbring & Gail P. Jarvik & Ifti, 2022. "Large-scale genomic analyses reveal insights into pleiotropy across circulatory system diseases and nervous system disorders," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    15. Molyneux, Philip & Pancotto, Livia & Reghezza, Alessio & Rodriguez d'Acri, Costanza, 2022. "Interest rate risk and monetary policy normalisation in the euro area," Journal of International Money and Finance, Elsevier, vol. 124(C).
    16. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    17. Georgios Bertsatos & Plutarchos Sakellaris & Mike G. Tsionas, 2022. "Extensions of the Pesaran, Shin and Smith (2001) bounds testing procedure," Empirical Economics, Springer, vol. 62(2), pages 605-634, February.
    18. Salimata Sissoko, 2011. "Working Paper 03-11 - Niveau de décentralisation de la négociation et structure des salaires," Working Papers 1103, Federal Planning Bureau, Belgium.
    19. Lu, Yao & Zhan, Shuwei & Zhan, Minghua, 2024. "Has FinTech changed the sensitivity of corporate investment to interest rates?—Evidence from China," Research in International Business and Finance, Elsevier, vol. 68(C).
    20. Korom, Philipp, 2016. "Inherited advantage: The importance of inheritance for private wealth accumulation in Europe," MPIfG Discussion Paper 16/11, Max Planck Institute for the Study of Societies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50726-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.