IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50720-3.html
   My bibliography  Save this article

N-glycosylation of SnRK2s affects NADPH maintenance in peroxisomes during prolonged ABA signalling

Author

Listed:
  • Junyao Lu

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Ning Li

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Gaojian Li

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Ziang Tian

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Lianping Shi

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Yan Wang

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Yingao Cai

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Kaiyuan Zhang

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Wanting Sun

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Danyang Wang

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Jinxin Lin

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Jinguang Huang

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Changai Wu

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Kang Yan

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Shizhong Zhang

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Chengchao Zheng

    (Shandong Agricultural University
    Shandong Agricultural University)

  • Guodong Yang

    (Shandong Agricultural University
    Shandong Agricultural University)

Abstract

Unfavourable conditions, such as prolonged drought and high salinity, pose a threat to the survival and agricultural yield of plants. The phytohormone ABA plays a key role in the regulation of plant stress adaptation and is often maintained at high levels for extended periods. While much is known about ABA signal perception and activation in the early signalling stage, the molecular mechanism underlying desensitization of ABA signalling remains largely unknown. Here we demonstrate that in the endoplasmic reticulum (ER)-Golgi network, the key regulators of ABA signalling, SnRK2.2/2.3, undergo N-glycosylation, which promotes their redistribution from the nucleus to the peroxisomes in Arabidopsis roots and influences the transcriptional response in the nucleus during prolonged ABA signalling. On the peroxisomal membrane, SnRK2s can interact with glucose-6-phosphate (G6P)/phosphate translocator 1 (GPT1) to maintain NADPH homeostasis through increased activity of the peroxisomal oxidative pentose phosphate pathway (OPPP). The resulting maintenance of NADPH is essential for the modulation of hydrogen peroxide (H2O2) accumulation, thereby relieving ABA-induced root growth inhibition. The subcellular dynamics of SnRK2s, mediated by N-glycosylation suggest that ABA responses transition from transcriptional regulation in the nucleus to metabolic processes in the peroxisomes, aiding plants in adapting to long-term environmental stress.

Suggested Citation

  • Junyao Lu & Ning Li & Gaojian Li & Ziang Tian & Lianping Shi & Yan Wang & Yingao Cai & Kaiyuan Zhang & Wanting Sun & Danyang Wang & Jinxin Lin & Jinguang Huang & Changai Wu & Kang Yan & Shizhong Zhang, 2024. "N-glycosylation of SnRK2s affects NADPH maintenance in peroxisomes during prolonged ABA signalling," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50720-3
    DOI: 10.1038/s41467-024-50720-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50720-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50720-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zachary J. Wright & Bonnie Bartel, 2020. "Peroxisomes form intralumenal vesicles with roles in fatty acid catabolism and protein compartmentalization in Arabidopsis," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Zhen-Ming Pei & Yoshiyuki Murata & Gregor Benning & Sébastien Thomine & Birgit Klüsener & Gethyn J. Allen & Erwin Grill & Julian I. Schroeder, 2000. "Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells," Nature, Nature, vol. 406(6797), pages 731-734, August.
    3. Ken-ichi Miyazono & Takuya Miyakawa & Yoriko Sawano & Keiko Kubota & Hee-Jin Kang & Atsuko Asano & Yumiko Miyauchi & Mihoko Takahashi & Yuehua Zhi & Yasunari Fujita & Takuya Yoshida & Ken-Suke Kodaira, 2009. "Structural basis of abscisic acid signalling," Nature, Nature, vol. 462(7273), pages 609-614, December.
    4. Hiroaki Fujii & Viswanathan Chinnusamy & Americo Rodrigues & Silvia Rubio & Regina Antoni & Sang-Youl Park & Sean R. Cutler & Jen Sheen & Pedro L. Rodriguez & Jian-Kang Zhu, 2009. "In vitro reconstitution of an abscisic acid signalling pathway," Nature, Nature, vol. 462(7273), pages 660-664, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang You & Shiyuan Guo & Qiao Li & Yanjun Fang & Panpan Huang & Chuanfeng Ju & Cun Wang, 2023. "The CBL1/9-CIPK1 calcium sensor negatively regulates drought stress by phosphorylating the PYLs ABA receptor," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Jia Zhou & Qinli Hu & Xinlong Xiao & Deqiang Yao & Shenghong Ge & Jin Ye & Haojie Li & Rujie Cai & Renyang Liu & Fangang Meng & Chao Wang & Jian-Kang Zhu & Mingguang Lei & Weiman Xing, 2021. "Mechanism of phosphate sensing and signaling revealed by rice SPX1-PHR2 complex structure," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Wen Shi & Yue Liu & Na Zhao & Lianmei Yao & Jinge Li & Min Fan & Bojian Zhong & Ming-Yi Bai & Chao Han, 2024. "Hydrogen peroxide is required for light-induced stomatal opening across different plant species," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Yage Ding & Cristina Tous & Jaehoon Choi & Jingyao Chen & Wilson W. Wong, 2024. "Orthogonal inducible control of Cas13 circuits enables programmable RNA regulation in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Ping Li & Nana Xu & Yang Shui & Jie Zhang & Wuzhong Yin & Min Tian & Faping Guo & Dasong Bai & Pan Qi & Qingxiong Huang & Biluo Li & Yuanyuan Li & Yungao Hu & Youlin Peng, 2023. "Phenotypic Analysis and Gene Cloning of a New Allelic Mutant of SPL5 in Rice," Agriculture, MDPI, vol. 13(10), pages 1-16, September.
    6. Helena KYSELÁKOVÁ & Michaela SEDLÁŘOVÁ & Martin KUBALA & Vladimíra NOŽKOVÁ & Jana PITERKOVÁ & Lenka LUHOVÁ & Ondřej NOVÁK & Petr ILÍK, 2013. "Reactive oxygen and nitrogen species and hormone signalling in systemic infection of pea by Pea enation mosaic virus," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 49(3), pages 105-119.
    7. Shen Huang & Chunli Wang & Zixuan Ding & Yaqian Zhao & Jing Dai & Jia Li & Haining Huang & Tongkai Wang & Min Zhu & Mingfeng Feng & Yinghua Ji & Zhongkai Zhang & Xiaorong Tao, 2024. "A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Abdel-Sattar, Mahmoud & Al-Obeed, Rashid S. & Makhasha, Essa & Mostafa, Laila Y. & Abdelzaher, Rania A.E. & Rihan, Hail Z., 2024. "Improving mangoes' productivity and crop water productivity by 24-epibrassinosteroids and hydrogen peroxide under deficit irrigation," Agricultural Water Management, Elsevier, vol. 298(C).
    9. Amandeep Kaur & Madhu & Alok Sharma & Kashmir Singh & Santosh Kumar Upadhyay, 2023. "Exploration of Piezo Channels in Bread Wheat ( Triticum aestivum L.)," Agriculture, MDPI, vol. 13(4), pages 1-16, March.
    10. Zhi-Zheng Wang & Min-Jie Cao & Junjie Yan & Jin Dong & Mo-Xian Chen & Jing-Fang Yang & Jian-Hong Li & Rui-Ning Ying & Yang-Yang Gao & Li Li & Ya-Nan Leng & Yuan Tian & Kamalani Achala H. Hewage & Rong, 2024. "Stabilization of dimeric PYR/PYL/RCAR family members relieves abscisic acid-induced inhibition of seed germination," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Xi Wang & Fan Zheng & Yuan-yuan Yi & Gao-yuan Wang & Li-xin Hong & Dannel McCollum & Chuanhai Fu & Yamei Wang & Quan-wen Jin, 2022. "Ubiquitination of CLIP-170 family protein restrains polarized growth upon DNA replication stress," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Benjamin J. M. Tremblay & Cristina P. Santini & Yajiao Cheng & Xue Zhang & Stefanie Rosa & Julia I. Qüesta, 2024. "Interplay between coding and non-coding regulation drives the Arabidopsis seed-to-seedling transition," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50720-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.