IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50525-4.html
   My bibliography  Save this article

Constrained patterning of orientated metal chalcogenide nanowires and their growth mechanism

Author

Listed:
  • Qishuo Yang

    (Southern University of Science and Technology
    Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong)
    The University of Queensland Brisbane)

  • Yun-Peng Wang

    (Central South University)

  • Xiao-Lei Shi

    (Queensland University of Technology Brisbane)

  • XingXing Li

    (Southern University of Science and Technology)

  • Erding Zhao

    (Southern University of Science and Technology)

  • Zhi-Gang Chen

    (Queensland University of Technology Brisbane)

  • Jin Zou

    (The University of Queensland Brisbane, St Lucia)

  • Kai Leng

    (Hong Kong Polytechnic University, Hung Hom)

  • Yongqing Cai

    (University of Macau, Taipa)

  • Liang Zhu

    (Southern University of Science and Technology)

  • Sokrates T. Pantelides

    (Vanderbilt University
    Vanderbilt University)

  • Junhao Lin

    (Southern University of Science and Technology
    Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong))

Abstract

One-dimensional metallic transition-metal chalcogenide nanowires (TMC-NWs) hold promise for interconnecting devices built on two-dimensional (2D) transition-metal dichalcogenides, but only isotropic growth has so far been demonstrated. Here we show the direct patterning of highly oriented Mo6Te6 NWs in 2D molybdenum ditelluride (MoTe2) using graphite as confined encapsulation layers under external stimuli. The atomic structural transition is studied through in-situ electrical biasing the fabricated heterostructure in a scanning transmission electron microscope. Atomic resolution high-angle annular dark-field STEM images reveal that the conversion of Mo6Te6 NWs from MoTe2 occurs only along specific directions. Combined with first-principles calculations, we attribute the oriented growth to the local Joule-heating induced by electrical bias near the interface of the graphite-MoTe2 heterostructure and the confinement effect generated by graphite. Using the same strategy, we fabricate oriented NWs confined in graphite as lateral contact electrodes in the 2H-MoTe2 FET, achieving a low Schottky barrier of 11.5 meV, and low contact resistance of 43.7 Ω µm at the metal-NW interface. Our work introduces possible approaches to fabricate oriented NWs for interconnections in flexible 2D nanoelectronics through direct metal phase patterning.

Suggested Citation

  • Qishuo Yang & Yun-Peng Wang & Xiao-Lei Shi & XingXing Li & Erding Zhao & Zhi-Gang Chen & Jin Zou & Kai Leng & Yongqing Cai & Liang Zhu & Sokrates T. Pantelides & Junhao Lin, 2024. "Constrained patterning of orientated metal chalcogenide nanowires and their growth mechanism," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50525-4
    DOI: 10.1038/s41467-024-50525-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50525-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50525-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ying Wang & Jun Xiao & Hanyu Zhu & Yao Li & Yousif Alsaid & King Yan Fong & Yao Zhou & Siqi Wang & Wu Shi & Yuan Wang & Alex Zettl & Evan J. Reed & Xiang Zhang, 2017. "Structural phase transition in monolayer MoTe2 driven by electrostatic doping," Nature, Nature, vol. 550(7677), pages 487-491, October.
    2. Karel-Alexander N. Duerloo & Yao Li & Evan J. Reed, 2014. "Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
    3. Pin-Chun Shen & Cong Su & Yuxuan Lin & Ang-Sheng Chou & Chao-Ching Cheng & Ji-Hoon Park & Ming-Hui Chiu & Ang-Yu Lu & Hao-Ling Tang & Mohammad Mahdi Tavakoli & Gregory Pitner & Xiang Ji & Zhengyang Ca, 2021. "Ultralow contact resistance between semimetal and monolayer semiconductors," Nature, Nature, vol. 593(7858), pages 211-217, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Zhou & Guitao Zhang & Wenhui Wang & Qian Chen & Weiwei Zhao & Hongwei Liu & Bei Zhao & Zhenhua Ni & Junpeng Lu, 2024. "Phase-engineered synthesis of atomically thin te single crystals with high on-state currents," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Xia Liu & Berke Erbas & Ana Conde-Rubio & Norma Rivano & Zhenyu Wang & Jin Jiang & Siiri Bienz & Naresh Kumar & Thibault Sohier & Marcos Penedo & Mitali Banerjee & Georg Fantner & Renato Zenobi & Nico, 2024. "Deterministic grayscale nanotopography to engineer mobilities in strained MoS2 FETs," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Jiaojian Shi & Ya-Qing Bie & Alfred Zong & Shiang Fang & Wei Chen & Jinchi Han & Zhaolong Cao & Yong Zhang & Takashi Taniguchi & Kenji Watanabe & Xuewen Fu & Vladimir Bulović & Efthimios Kaxiras & Edo, 2023. "Intrinsic 1 $${T}^{{\prime} }$$ T ′ phase induced in atomically thin 2H-MoTe2 by a single terahertz pulse," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Zhiheng Huang & Yunfei Bai & Yanchong Zhao & Le Liu & Xuan Zhao & Jiangbin Wu & Kenji Watanabe & Takashi Taniguchi & Wei Yang & Dongxia Shi & Yang Xu & Tiantian Zhang & Qingming Zhang & Ping-Heng Tan , 2024. "Observation of phonon Stark effect," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Subir Ghosh & Andrew Pannone & Dipanjan Sen & Akshay Wali & Harikrishnan Ravichandran & Saptarshi Das, 2023. "An all 2D bio-inspired gustatory circuit for mimicking physiology and psychology of feeding behavior," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Yaoqiang Zhou & Lei Tong & Zefeng Chen & Li Tao & Yue Pang & Jian-Bin Xu, 2023. "Contact-engineered reconfigurable two-dimensional Schottky junction field-effect transistor with low leakage currents," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. John Daniel & Zheng Sun & Xuejian Zhang & Yuanqiu Tan & Neil Dilley & Zhihong Chen & Joerg Appenzeller, 2024. "Experimental demonstration of an on-chip p-bit core based on stochastic magnetic tunnel junctions and 2D MoS2 transistors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Xiaodong Zhang & Chenxi Huang & Zeyu Li & Jun Fu & Jiaran Tian & Zhuping Ouyang & Yuliang Yang & Xiang Shao & Yulei Han & Zhenhua Qiao & Hualing Zeng, 2024. "Reliable wafer-scale integration of two-dimensional materials and metal electrodes with van der Waals contacts," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Lu Li & Qinqin Wang & Fanfan Wu & Qiaoling Xu & Jinpeng Tian & Zhiheng Huang & Qinghe Wang & Xuan Zhao & Qinghua Zhang & Qinkai Fan & Xiuzhen Li & Yalin Peng & Yangkun Zhang & Kunshan Ji & Aomiao Zhi , 2024. "Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Muhtasim Ul Karim Sadaf & Najam U Sakib & Andrew Pannone & Harikrishnan Ravichandran & Saptarshi Das, 2023. "A bio-inspired visuotactile neuron for multisensory integration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Bo Tong & Jinhong Du & Lichang Yin & Dingdong Zhang & Weimin Zhang & Yu Liu & Yuning Wei & Chi Liu & Yan Liang & Dong-Ming Sun & Lai-Peng Ma & Hui-Ming Cheng & Wencai Ren, 2022. "A polymer electrolyte design enables ultralow-work-function electrode for high-performance optoelectronics," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Le Lei & Jiaqi Dai & Haoyu Dong & Yanyan Geng & Feiyue Cao & Cong Wang & Rui Xu & Fei Pang & Zheng-Xin Liu & Fangsen Li & Zhihai Cheng & Guang Wang & Wei Ji, 2023. "Electronic Janus lattice and kagome-like bands in coloring-triangular MoTe2 monolayers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Kai Xiao & Jing Wan & Hui Xie & Yuxuan Zhu & Tian Tian & Wei Zhang & Yingxin Chen & Jinshu Zhang & Lihui Zhou & Sheng Dai & Zihan Xu & Wenzhong Bao & Peng Zhou, 2024. "High performance Si-MoS2 heterogeneous embedded DRAM," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Xingchen Pang & Yang Wang & Yuyan Zhu & Zhenhan Zhang & Du Xiang & Xun Ge & Haoqi Wu & Yongbo Jiang & Zizheng Liu & Xiaoxian Liu & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Xiangbin Cai & Zefei Wu & Xu Han & Yong Chen & Shuigang Xu & Jiangxiazi Lin & Tianyi Han & Pingge He & Xuemeng Feng & Liheng An & Run Shi & Jingwei Wang & Zhehan Ying & Yuan Cai & Mengyuan Hua & Junwe, 2022. "Bridging the gap between atomically thin semiconductors and metal leads," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Xufan Li & Samuel Wyss & Emanuil Yanev & Qing-Jie Li & Shuang Wu & Yongwen Sun & Raymond R. Unocic & Joseph Stage & Matthew Strasbourg & Lucas M. Sassi & Yingxin Zhu & Ju Li & Yang Yang & James Hone &, 2024. "Width-dependent continuous growth of atomically thin quantum nanoribbons from nanoalloy seeds in chalcogen vapor," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Lingan Kong & Ruixia Wu & Yang Chen & Ying Huangfu & Liting Liu & Wei Li & Donglin Lu & Quanyang Tao & Wenjing Song & Wanying Li & Zheyi Lu & Xiao Liu & Yunxin Li & Zhiwei Li & Wei Tong & Shuimei Ding, 2023. "Wafer-scale and universal van der Waals metal semiconductor contact," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Jun Yu & Han Wang & Fuwei Zhuge & Zirui Chen & Man Hu & Xiang Xu & Yuhui He & Ying Ma & Xiangshui Miao & Tianyou Zhai, 2023. "Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Maosong Xie & Yueyang Jia & Chen Nie & Zuheng Liu & Alvin Tang & Shiquan Fan & Xiaoyao Liang & Li Jiang & Zhezhi He & Rui Yang, 2023. "Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50525-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.