IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50499-3.html
   My bibliography  Save this article

Alloying and confinement effects on hierarchically nanoporous CuAu for efficient electrocatalytic semi-hydrogenation of terminal alkynes

Author

Listed:
  • Linghu Meng

    (Hunan University)

  • Cheng-Wei Kao

    (National Synchrotron Radiation Research Center)

  • Zhen Wang

    (Hunan University)

  • Jun Ma

    (Hunan University)

  • Peifeng Huang

    (Hunan University)

  • Nan Zhao

    (North China Electric Power)

  • Xin Zheng

    (North China Electric Power)

  • Ming Peng

    (Hunan University)

  • Ying-Rui Lu

    (National Synchrotron Radiation Research Center)

  • Yongwen Tan

    (Hunan University)

Abstract

Electrocatalytic alkynes semi-hydrogenation to produce alkenes with high yield and Faradaic efficiency remains technically challenging because of kinetically favorable hydrogen evolution reaction and over-hydrogenation. Here, we propose a hierarchically nanoporous Cu50Au50 alloy to improve electrocatalytic performance toward semi-hydrogenation of alkynes. Using Operando X-ray absorption spectroscopy and density functional theory calculations, we find that Au modulate the electronic structure of Cu, which could intrinsically inhibit the combination of H* to form H2 and weaken alkene adsorption, thus promoting alkyne semi-hydrogenation and hampering alkene over-hydrogenation. Finite element method simulations and experimental results unveil that hierarchically nanoporous catalysts induce a local microenvironment with abundant K+ cations by enhancing the electric field within the nanopore, accelerating water electrolysis to form more H*, thereby promoting the conversion of alkynes. As a result, the nanoporous Cu50Au50 electrocatalyst achieves highly efficient electrocatalytic semi-hydrogenation of alkynes with 94% conversion, 100% selectivity, and a 92% Faradaic efficiency over wide potential window. This work provides a general guidance of the rational design for high-performance electrocatalytic transfer semi-hydrogenation catalysts.

Suggested Citation

  • Linghu Meng & Cheng-Wei Kao & Zhen Wang & Jun Ma & Peifeng Huang & Nan Zhao & Xin Zheng & Ming Peng & Ying-Rui Lu & Yongwen Tan, 2024. "Alloying and confinement effects on hierarchically nanoporous CuAu for efficient electrocatalytic semi-hydrogenation of terminal alkynes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50499-3
    DOI: 10.1038/s41467-024-50499-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50499-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50499-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cong Wei & Yanyan Fang & Bo Liu & Chongyang Tang & Bin Dong & Xuanwei Yin & Zenan Bian & Zhandong Wang & Jun Liu & Yitai Qian & Gongming Wang, 2023. "Lattice oxygen-mediated electron tuning promotes electrochemical hydrogenation of acetonitrile on copper catalysts," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jun Bu & Siyu Chang & Jinjin Li & Sanyin Yang & Wenxiu Ma & Zhenpeng Liu & Siying An & Yanan Wang & Zhen Li & Jian Zhang, 2023. "Highly selective electrocatalytic alkynol semi-hydrogenation for continuous production of alkenols," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Zesong Ma & Zhilong Yang & Wenchuan Lai & Qiyou Wang & Yan Qiao & Haolan Tao & Cheng Lian & Min Liu & Chao Ma & Anlian Pan & Hongwen Huang, 2022. "CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang Yang & Ming Li & Tianqi Gao & Guoliang Xu & Di Li & Yao Zheng & Qiang Li & Jingjing Duan, 2024. "An acid-tolerant metal-organic framework for industrial CO2 electrolysis using a proton exchange membrane," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Hai-Gang Qin & Yun-Fan Du & Yi-Yang Bai & Fu-Zhi Li & Xian Yue & Hao Wang & Jian-Zhao Peng & Jun Gu, 2023. "Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Jiaqi Feng & Limin Wu & Xinning Song & Libing Zhang & Shunhan Jia & Xiaodong Ma & Xingxing Tan & Xinchen Kang & Qinggong Zhu & Xiaofu Sun & Buxing Han, 2024. "CO2 electrolysis to multi-carbon products in strong acid at ampere-current levels on La-Cu spheres with channels," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Shoujie Li & Xiao Dong & Gangfeng Wu & Yanfang Song & Jianing Mao & Aohui Chen & Chang Zhu & Guihua Li & Yiheng Wei & Xiaohu Liu & Jiangjiang Wang & Wei Chen & Wei Wei, 2024. "Ampere-level CO2 electroreduction with single-pass conversion exceeding 85% in acid over silver penetration electrodes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Weihua Guo & Siwei Zhang & Junjie Zhang & Haoran Wu & Yangbo Ma & Yun Song & Le Cheng & Liang Chang & Geng Li & Yong Liu & Guodan Wei & Lin Gan & Minghui Zhu & Shibo Xi & Xue Wang & Boris I. Yakobson , 2023. "Accelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50499-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.