IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49308-8.html
   My bibliography  Save this article

CO2 electrolysis to multi-carbon products in strong acid at ampere-current levels on La-Cu spheres with channels

Author

Listed:
  • Jiaqi Feng

    (Chinese Academy of Sciences
    China University of Petroleum (Beijing))

  • Limin Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xinning Song

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Libing Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shunhan Jia

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiaodong Ma

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xingxing Tan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xinchen Kang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qinggong Zhu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiaofu Sun

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Buxing Han

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    East China Normal University)

Abstract

Achieving satisfactory multi-carbon (C2+) products selectivity and current density under acidic condition is a key issue for practical application of electrochemical CO2 reduction reaction (CO2RR), but is challenging. Herein, we demonstrate that combining microenvironment modulation by porous channel structure and intrinsic catalytic activity enhancement via doping effect could promote efficient CO2RR toward C2+ products in acidic electrolyte (pH ≤ 1). The La-doped Cu hollow sphere with channels exhibits a C2+ products Faradaic efficiency (FE) of 86.2% with a partial current density of −775.8 mA cm−2. CO2 single-pass conversion efficiency for C2+ products can reach 52.8% at −900 mA cm−2. Moreover, the catalyst still maintains a high C2+ FE of 81.3% at −1 A cm−2. The channel structure plays a crucial role in accumulating K+ and OH- species near the catalyst surface and within the channels, which effectively suppresses the undesired hydrogen evolution and promotes C–C coupling. Additionally, the La doping enhances the generation of *CO intermediate, and also facilitates C2+ products formation.

Suggested Citation

  • Jiaqi Feng & Limin Wu & Xinning Song & Libing Zhang & Shunhan Jia & Xiaodong Ma & Xingxing Tan & Xinchen Kang & Qinggong Zhu & Xiaofu Sun & Buxing Han, 2024. "CO2 electrolysis to multi-carbon products in strong acid at ampere-current levels on La-Cu spheres with channels," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49308-8
    DOI: 10.1038/s41467-024-49308-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49308-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49308-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yufei Cao & Zhu Chen & Peihao Li & Adnan Ozden & Pengfei Ou & Weiyan Ni & Jehad Abed & Erfan Shirzadi & Jinqiang Zhang & David Sinton & Jun Ge & Edward H. Sargent, 2023. "Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Miao Zhong & Kevin Tran & Yimeng Min & Chuanhao Wang & Ziyun Wang & Cao-Thang Dinh & Phil De Luna & Zongqian Yu & Armin Sedighian Rasouli & Peter Brodersen & Song Sun & Oleksandr Voznyy & Chih-Shan Ta, 2020. "Accelerated discovery of CO2 electrocatalysts using active machine learning," Nature, Nature, vol. 581(7807), pages 178-183, May.
    3. Jin Zhang & Chenxi Guo & Susu Fang & Xiaotong Zhao & Le Li & Haoyang Jiang & Zhaoyang Liu & Ziqi Fan & Weigao Xu & Jianping Xiao & Miao Zhong, 2023. "Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Pengtang Wang & Hao Yang & Cheng Tang & Yu Wu & Yao Zheng & Tao Cheng & Kenneth Davey & Xiaoqing Huang & Shi-Zhang Qiao, 2022. "Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Xiaoning Wang & Yanfu Tong & Wenting Feng & Pengyun Liu & Xuejin Li & Yongpeng Cui & Tonghui Cai & Lianming Zhao & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2023. "Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Zesong Ma & Zhilong Yang & Wenchuan Lai & Qiyou Wang & Yan Qiao & Haolan Tao & Cheng Lian & Min Liu & Chao Ma & Anlian Pan & Hongwen Huang, 2022. "CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Jiaqi Feng & Hongshuai Gao & Lirong Zheng & Zhipeng Chen & Shaojuan Zeng & Chongyang Jiang & Haifeng Dong & Licheng Liu & Suojiang Zhang & Xiangping Zhang, 2020. "A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    8. Qinggong Zhu & Xiaofu Sun & Dexin Yang & Jun Ma & Xinchen Kang & Lirong Zheng & Jing Zhang & Zhonghua Wu & Buxing Han, 2019. "Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weihua Guo & Siwei Zhang & Junjie Zhang & Haoran Wu & Yangbo Ma & Yun Song & Le Cheng & Liang Chang & Geng Li & Yong Liu & Guodan Wei & Lin Gan & Minghui Zhu & Shibo Xi & Xue Wang & Boris I. Yakobson , 2023. "Accelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Cheng Du & Joel P. Mills & Asfaw G. Yohannes & Wei Wei & Lei Wang & Siyan Lu & Jian-Xiang Lian & Maoyu Wang & Tao Guo & Xiyang Wang & Hua Zhou & Cheng-Jun Sun & John Z. Wen & Brian Kendall & Martin Co, 2023. "Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO2 electroreduction toward multicarbon products," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Kang Yang & Ming Li & Tianqi Gao & Guoliang Xu & Di Li & Yao Zheng & Qiang Li & Jingjing Duan, 2024. "An acid-tolerant metal-organic framework for industrial CO2 electrolysis using a proton exchange membrane," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Ruiz-López, Estela & Gandara-Loe, Jesús & Baena-Moreno, Francisco & Reina, Tomas Ramirez & Odriozola, José Antonio, 2022. "Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Xiaohan Yu & Yuting Xu & Le Li & Mingzhe Zhang & Wenhao Qin & Fanglin Che & Miao Zhong, 2024. "Coverage enhancement accelerates acidic CO2 electrolysis at ampere-level current with high energy and carbon efficiencies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Xin Yu Zhang & Zhen Xin Lou & Jiacheng Chen & Yuanwei Liu & Xuefeng Wu & Jia Yue Zhao & Hai Yang Yuan & Minghui Zhu & Sheng Dai & Hai Feng Wang & Chenghua Sun & Peng Fei Liu & Hua Gui Yang, 2023. "Direct OC-CHO coupling towards highly C2+ products selective electroreduction over stable Cu0/Cu2+ interface," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Yongxiang Liang & Jiankang Zhao & Yu Yang & Sung-Fu Hung & Jun Li & Shuzhen Zhang & Yong Zhao & An Zhang & Cheng Wang & Dominique Appadoo & Lei Zhang & Zhigang Geng & Fengwang Li & Jie Zeng, 2023. "Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Xiaoyun Lin & Xiaowei Du & Shican Wu & Shiyu Zhen & Wei Liu & Chunlei Pei & Peng Zhang & Zhi-Jian Zhao & Jinlong Gong, 2024. "Machine learning-assisted dual-atom sites design with interpretable descriptors unifying electrocatalytic reactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Yiyan Yin & Xiyang Ge & Jin Ouyang & Na Na, 2024. "Tumor-activated in situ synthesis of single-atom catalysts for O2-independent photodynamic therapy based on water-splitting," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Tuğçe Beyazay & Kendra S. Belthle & Christophe Farès & Martina Preiner & Joseph Moran & William F. Martin & Harun Tüysüz, 2023. "Ambient temperature CO2 fixation to pyruvate and subsequently to citramalate over iron and nickel nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Jiaqi Feng & Libing Zhang & Shoujie Liu & Liang Xu & Xiaodong Ma & Xingxing Tan & Limin Wu & Qingli Qian & Tianbin Wu & Jianling Zhang & Xiaofu Sun & Buxing Han, 2023. "Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Wei Liu & Pengbo Zhai & Aowen Li & Bo Wei & Kunpeng Si & Yi Wei & Xingguo Wang & Guangda Zhu & Qian Chen & Xiaokang Gu & Ruifeng Zhang & Wu Zhou & Yongji Gong, 2022. "Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. SJ, Balaji & Babu, Suresh Chandra & Pal, Suresh, 2021. "Understanding Science and Policy Making in Agriculture: A Machine Learning Application for India," 2021 Conference, August 17-31, 2021, Virtual 315227, International Association of Agricultural Economists.
    14. Bo Peng & Ye Wei & Yu Qin & Jiabao Dai & Yue Li & Aobo Liu & Yun Tian & Liuliu Han & Yufeng Zheng & Peng Wen, 2023. "Machine learning-enabled constrained multi-objective design of architected materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Jiqing Jiao & Qing Yuan & Meijie Tan & Xiaoqian Han & Mingbin Gao & Chao Zhang & Xuan Yang & Zhaolin Shi & Yanbin Ma & Hai Xiao & Jiangwei Zhang & Tongbu Lu, 2023. "Constructing asymmetric double-atomic sites for synergistic catalysis of electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Hefei Li & Pengfei Wei & Tianfu Liu & Mingrun Li & Chao Wang & Rongtan Li & Jinyu Ye & Zhi-You Zhou & Shi-Gang Sun & Qiang Fu & Dunfeng Gao & Guoxiong Wang & Xinhe Bao, 2024. "CO electrolysis to multicarbon products over grain boundary-rich Cu nanoparticles in membrane electrode assembly electrolyzers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Hai-Gang Qin & Yun-Fan Du & Yi-Yang Bai & Fu-Zhi Li & Xian Yue & Hao Wang & Jian-Zhao Peng & Jun Gu, 2023. "Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Jikai Sun & Rui Tu & Yuchun Xu & Hongyan Yang & Tie Yu & Dong Zhai & Xiuqin Ci & Weiqiao Deng, 2024. "Machine learning aided design of single-atom alloy catalysts for methane cracking," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Kaihang Yue & Yanyang Qin & Honghao Huang & Zhuoran Lv & Mingzhi Cai & Yaqiong Su & Fuqiang Huang & Ya Yan, 2024. "Stabilized Cu0 -Cu1+ dual sites in a cyanamide framework for selective CO2 electroreduction to ethylene," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Wenzhe Niu & Jie Feng & Junfeng Chen & Lei Deng & Wen Guo & Huajing Li & Liqiang Zhang & Youyong Li & Bo Zhang, 2024. "High-efficiency C3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49308-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.