IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39558-3.html
   My bibliography  Save this article

Lattice oxygen-mediated electron tuning promotes electrochemical hydrogenation of acetonitrile on copper catalysts

Author

Listed:
  • Cong Wei

    (University of Science and Technology of China)

  • Yanyan Fang

    (University of Science and Technology of China)

  • Bo Liu

    (University of Science and Technology of China)

  • Chongyang Tang

    (University of Science and Technology of China)

  • Bin Dong

    (University of Science and Technology of China)

  • Xuanwei Yin

    (University of Science and Technology of China)

  • Zenan Bian

    (University of Science and Technology of China)

  • Zhandong Wang

    (University of Science and Technology of China)

  • Jun Liu

    (Hefei Institutes of Physical Science, Chinese Academy of Sciences)

  • Yitai Qian

    (University of Science and Technology of China)

  • Gongming Wang

    (University of Science and Technology of China)

Abstract

Copper is well-known to be selective to primary amines via electrocatalytic nitriles hydrogenation. However, the correlation between the local fine structure and catalytic selectivity is still illusive. Herein, we find that residual lattice oxygen in oxide-derived Cu nanowires (OD-Cu NWs) plays vital roles in boosting the acetonitrile electroreduction efficiency. Especially at high current densities of more than 1.0 A cm−2, OD-Cu NWs exhibit relatively high Faradic efficiency. Meanwhile, a series of advanced in situ characterizations and theoretical calculations uncover that oxygen residues, in the form of Cu4-O configuration, act as electron acceptors to confine the free electron flow on the Cu surface, consequently improving the kinetics of nitriles hydrogenation catalysis. This work could provide new opportunities to further improve the hydrogenation performance of nitriles and beyond, by employing lattice oxygen-mediated electron tuning engineering.

Suggested Citation

  • Cong Wei & Yanyan Fang & Bo Liu & Chongyang Tang & Bin Dong & Xuanwei Yin & Zenan Bian & Zhandong Wang & Jun Liu & Yitai Qian & Gongming Wang, 2023. "Lattice oxygen-mediated electron tuning promotes electrochemical hydrogenation of acetonitrile on copper catalysts," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39558-3
    DOI: 10.1038/s41467-023-39558-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39558-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39558-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhibo Liu & Fei Huang & Mi Peng & Yunlei Chen & Xiangbin Cai & Linlin Wang & Zenan Hu & Xiaodong Wen & Ning Wang & Dequan Xiao & Hong Jiang & Hongbin Sun & Hongyang Liu & Ding Ma, 2021. "Tuning the selectivity of catalytic nitriles hydrogenation by structure regulation in atomically dispersed Pd catalysts," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Geng Wu & Xiao Han & Jinyan Cai & Peiqun Yin & Peixin Cui & Xusheng Zheng & Hai Li & Cai Chen & Gongming Wang & Xun Hong, 2022. "In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Sai Zhang & Zhaoming Xia & Yong Zou & Mingkai Zhang & Yongquan Qu, 2021. "Spatial intimacy of binary active-sites for selective sequential hydrogenation-condensation of nitriles into secondary imines," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linghu Meng & Cheng-Wei Kao & Zhen Wang & Jun Ma & Peifeng Huang & Nan Zhao & Xin Zheng & Ming Peng & Ying-Rui Lu & Yongwen Tan, 2024. "Alloying and confinement effects on hierarchically nanoporous CuAu for efficient electrocatalytic semi-hydrogenation of terminal alkynes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chongyang Tang & Cong Wei & Yanyan Fang & Bo Liu & Xianyin Song & Zenan Bian & Xuanwei Yin & Hongbo Wang & Zhaohui Liu & Gongming Wang & Xiangheng Xiao & Xiangfeng Duan, 2024. "Electrocatalytic hydrogenation of acetonitrile to ethylamine in acid," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Jie Xu & Xiong-Xiong Xue & Gonglei Shao & Changfei Jing & Sheng Dai & Kun He & Peipei Jia & Shun Wang & Yifei Yuan & Jun Luo & Jun Lu, 2023. "Atomic-level polarization in electric fields of defects for electrocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Jiachen Li & Yuqiang Ma & Cong Zhang & Chi Zhang & Huijun Ma & Zhaoqi Guo & Ning Liu & Ming Xu & Haixia Ma & Jieshan Qiu, 2023. "Green electrosynthesis of 3,3’-diamino-4,4’-azofurazan energetic materials coupled with energy-efficient hydrogen production over Pt-based catalysts," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Jinqi Xiong & Shanjun Mao & Qian Luo & Honghui Ning & Bing Lu & Yanling Liu & Yong Wang, 2024. "Mediating trade-off between activity and selectivity in alkynes semi-hydrogenation via a hydrophilic polar layer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Qianhong Wang & Keng Sang & Changwei Liu & Zhihua Zhang & Wenyao Chen & Te Ji & Lina Li & Cheng Lian & Gang Qian & Jing Zhang & Xinggui Zhou & Weikang Yuan & Xuezhi Duan, 2024. "Nanoparticles as an antidote for poisoned gold single-atom catalysts in sustainable propylene epoxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Yaoda Liu & Lei Li & Li Wang & Na Li & Xiaoxu Zhao & Ya Chen & Thangavel Sakthivel & Zhengfei Dai, 2024. "Janus electronic state of supported iridium nanoclusters for sustainable alkaline water electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Rui Li & Yongmeng Wu & Changhong Wang & Meng He & Cuibo Liu & Bin Zhang, 2022. "One-pot H/D exchange and low-coordinated iron electrocatalyzed deuteration of nitriles in D2O to α,β-deuterio aryl ethylamines," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Xiaowen Chen & Xuetao Qin & Yueyue Jiao & Mi Peng & Jiangyong Diao & Pengju Ren & Chengyu Li & Dequan Xiao & Xiaodong Wen & Zheng Jiang & Ning Wang & Xiangbin Cai & Hongyang Liu & Ding Ma, 2023. "Structure-dependence and metal-dependence on atomically dispersed Ir catalysts for efficient n-butane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Yuanfeng Li & Tian Qin & Yuechang Wei & Jing Xiong & Peng Zhang & Kezhen Lai & Hongjie Chi & Xi Liu & Liwei Chen & Xiaolin Yu & Zhen Zhao & Lina Li & Jian Liu, 2023. "A single site ruthenium catalyst for robust soot oxidation without platinum or palladium," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39558-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.