IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37570-1.html
   My bibliography  Save this article

Predicting compound activity from phenotypic profiles and chemical structures

Author

Listed:
  • Nikita Moshkov

    (Broad Institute of MIT and Harvard
    Biological Research Centre)

  • Tim Becker

    (Broad Institute of MIT and Harvard)

  • Kevin Yang

    (University of California)

  • Peter Horvath

    (Biological Research Centre)

  • Vlado Dancik

    (Broad Institute of MIT and Harvard)

  • Bridget K. Wagner

    (Broad Institute of MIT and Harvard)

  • Paul A. Clemons

    (Broad Institute of MIT and Harvard)

  • Shantanu Singh

    (Broad Institute of MIT and Harvard)

  • Anne E. Carpenter

    (Broad Institute of MIT and Harvard)

  • Juan C. Caicedo

    (Broad Institute of MIT and Harvard)

Abstract

Predicting assay results for compounds virtually using chemical structures and phenotypic profiles has the potential to reduce the time and resources of screens for drug discovery. Here, we evaluate the relative strength of three high-throughput data sources—chemical structures, imaging (Cell Painting), and gene-expression profiles (L1000)—to predict compound bioactivity using a historical collection of 16,170 compounds tested in 270 assays for a total of 585,439 readouts. All three data modalities can predict compound activity for 6–10% of assays, and in combination they predict 21% of assays with high accuracy, which is a 2 to 3 times higher success rate than using a single modality alone. In practice, the accuracy of predictors could be lower and still be useful, increasing the assays that can be predicted from 37% with chemical structures alone up to 64% when combined with phenotypic data. Our study shows that unbiased phenotypic profiling can be leveraged to enhance compound bioactivity prediction to accelerate the early stages of the drug-discovery process.

Suggested Citation

  • Nikita Moshkov & Tim Becker & Kevin Yang & Peter Horvath & Vlado Dancik & Bridget K. Wagner & Paul A. Clemons & Shantanu Singh & Anne E. Carpenter & Juan C. Caicedo, 2023. "Predicting compound activity from phenotypic profiles and chemical structures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37570-1
    DOI: 10.1038/s41467-023-37570-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37570-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37570-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kristof T. Schütt & Farhad Arbabzadah & Stefan Chmiela & Klaus R. Müller & Alexandre Tkatchenko, 2017. "Quantum-chemical insights from deep tensor neural networks," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Chen & Flavio Abreu Araujo & Mathieu Riou & Jacob Torrejon & Dafiné Ravelosona & Wang Kang & Weisheng Zhao & Julie Grollier & Damien Querlioz, 2022. "Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Xiao Tan & Yuan Zhou & Zuohua Ding & Yang Liu, 2021. "Selecting Correct Methods to Extract Fuzzy Rules from Artificial Neural Network," Mathematics, MDPI, vol. 9(11), pages 1-22, May.
    3. Alessio Fallani & Leonardo Medrano Sandonas & Alexandre Tkatchenko, 2024. "Inverse mapping of quantum properties to structures for chemical space of small organic molecules," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Stephan Thaler & Julija Zavadlav, 2021. "Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Yusong Wang & Tong Wang & Shaoning Li & Xinheng He & Mingyu Li & Zun Wang & Nanning Zheng & Bin Shao & Tie-Yan Liu, 2024. "Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Simon Batzner & Albert Musaelian & Lixin Sun & Mario Geiger & Jonathan P. Mailoa & Mordechai Kornbluth & Nicola Molinari & Tess E. Smidt & Boris Kozinsky, 2022. "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Charlotte Loh & Thomas Christensen & Rumen Dangovski & Samuel Kim & Marin Soljačić, 2022. "Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Sunghwan Choi, 2023. "Prediction of transition state structures of gas-phase chemical reactions via machine learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. J. Thorben Frank & Oliver T. Unke & Klaus-Robert Müller & Stefan Chmiela, 2024. "A Euclidean transformer for fast and stable machine learned force fields," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Yuanming Bai & Leslie Vogt-Maranto & Mark E. Tuckerman & William J. Glover, 2022. "Machine learning the Hohenberg-Kohn map for molecular excited states," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Albert Musaelian & Simon Batzner & Anders Johansson & Lixin Sun & Cameron J. Owen & Mordechai Kornbluth & Boris Kozinsky, 2023. "Learning local equivariant representations for large-scale atomistic dynamics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Oliver T. Unke & Stefan Chmiela & Michael Gastegger & Kristof T. Schütt & Huziel E. Sauceda & Klaus-Robert Müller, 2021. "SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37570-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.