IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v616y2023i7958d10.1038_s41586-023-05905-z.html
   My bibliography  Save this article

Computational approaches streamlining drug discovery

Author

Listed:
  • Anastasiia V. Sadybekov

    (University of Southern California
    University of Southern California)

  • Vsevolod Katritch

    (University of Southern California
    University of Southern California
    University of Southern California)

Abstract

Computer-aided drug discovery has been around for decades, although the past few years have seen a tectonic shift towards embracing computational technologies in both academia and pharma. This shift is largely defined by the flood of data on ligand properties and binding to therapeutic targets and their 3D structures, abundant computing capacities and the advent of on-demand virtual libraries of drug-like small molecules in their billions. Taking full advantage of these resources requires fast computational methods for effective ligand screening. This includes structure-based virtual screening of gigascale chemical spaces, further facilitated by fast iterative screening approaches. Highly synergistic are developments in deep learning predictions of ligand properties and target activities in lieu of receptor structure. Here we review recent advances in ligand discovery technologies, their potential for reshaping the whole process of drug discovery and development, as well as the challenges they encounter. We also discuss how the rapid identification of highly diverse, potent, target-selective and drug-like ligands to protein targets can democratize the drug discovery process, presenting new opportunities for the cost-effective development of safer and more effective small-molecule treatments.

Suggested Citation

  • Anastasiia V. Sadybekov & Vsevolod Katritch, 2023. "Computational approaches streamlining drug discovery," Nature, Nature, vol. 616(7958), pages 673-685, April.
  • Handle: RePEc:nat:nature:v:616:y:2023:i:7958:d:10.1038_s41586-023-05905-z
    DOI: 10.1038/s41586-023-05905-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-05905-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-05905-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick Bryant & Atharva Kelkar & Andrea Guljas & Cecilia Clementi & Frank Noé, 2024. "Structure prediction of protein-ligand complexes from sequence information with Umol," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Arnau Comajuncosa-Creus & Guillem Jorba & Xavier Barril & Patrick Aloy, 2024. "Comprehensive detection and characterization of human druggable pockets through binding site descriptors," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Zhenkai Guo & Dianlong Hou & Qiang He, 2024. "Hybrid Genetic Algorithm and CMA-ES Optimization for RNN-Based Chemical Compound Classification," Mathematics, MDPI, vol. 12(11), pages 1-18, May.
    4. Xin Chen & Kexin Wang & Jianfang Chen & Chao Wu & Jun Mao & Yuanpeng Song & Yijing Liu & Zhenhua Shao & Xuemei Pu, 2024. "Integrative residue-intuitive machine learning and MD Approach to Unveil Allosteric Site and Mechanism for β2AR," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Alessio Fallani & Leonardo Medrano Sandonas & Alexandre Tkatchenko, 2024. "Inverse mapping of quantum properties to structures for chemical space of small organic molecules," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:616:y:2023:i:7958:d:10.1038_s41586-023-05905-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.